

CIENTISOL, S.L.U. Tel. 981 936 338 info@cientisol.com www.cientisol.com

Inorganic certified reference materials

Welcome

Spex CertiPrep has been servicing the scientific community since 1954. We have grown into the industry's most passionate and reliable manufacturer of Certified Reference Materials (CRMs) and Calibration Standards for Analytical Spectroscopy and Chromatography.

We are pleased to share with you the latest and greatest Spex CertiPrep Certified Reference Materials catalog. This flip-book style catalog includes our Inorganic Certified Reference Materials on one side and Organic Certified Reference Materials on the other.

Our primary focus is to provide Inorganic and Organic CRMs of the highest quality and superior customer support. The Inorganic Standards are manufactured for AA, ICP, ICP-MS, IC, XRF, and other analytical instrumentation. The Organic Standards are manufactured for GC, GC/MS, HPLC, LC/MS, and other analytical instrumentation.

Spex CertiPrep Group is accredited by A2LA to ISO/IEC 17025:2017 and ISO 17034:2016 and by DQS to ISO 9001:2015. Our accreditation is the most comprehensive in the industry and encompasses all of our manufactured products.

Our Inorganic product line expands as technology improves. Ninety-nine percent of stock orders ship within 24-48 hours and custom standards are manufactured and shipped within 5 business days.

We are proud to offer many new and diverse Inorganic products in this catalog, including:

Speciation Standards
Carbon Black
1 ppm ICP-MS Single Element Standards
USP <232>, <233> & <2232> Elemental Impurities
Certified pH Buffers
Multi-Element Standards for the latest EPA Methods
European Methods
Our heritage is our passion for science and dedication to the analytical community.

We appreciate your business and look forward to working with you in the years to come.

© 2022 Spex CertiPrep. All Rights Reserved. 4772A

OUR MISSION

Since 1954, we have been manufacturing Inorganic Certified Reference Materials (CRMs). SPEXInorganics[®] continues to lead the market with the highest quality products and an offering that spreads out into many market segments worldwide. We consistently strive to design and manufacture new products to meet or exceed the requirements set by the newest instrumentation and regulatory concerns. Our team of highly trained chemists work to provide 100% customer satisfaction.

TABLE OF CONTENTS

Ordering Information & Technical Support3Custom Standards Program4Quality5Certificate of Analysis6Spex Companies Overview7	Introduction
Introduction.9Single-Element Standards.10Calibration & Matrix Blanks22ICP Standards Kit.22	Carbon Black Reagents for ASTM D1510
Speciation Standards	Introduction
Introduction.29Single-Element Standards.30Matrix Blanks37Isotopes37	pH Buffers & Conductivity Standards
Introduction	Organometallic Oil Standards
Introduction	Introduction
Introduction.63Standards for the Contract Laboratory Program64Methods65CLP Standards68	Inorganic Part Number Index
Testing Kits	

Ordering Information & Technical Support

Phone:	+1.732.549.7144 • 1.800.LAB.SPEX (1.800.522.7739)
Fax:	+1.732.603.9647
E-mail:	spexsales@antylia.com
Online Orders and Live Chat:	www.spex.com
Ask A Chemist:	AskAChemist@antylia.com
Mailing Address:	Spex CertiPrep • 203 Norcross Avenue • Metuchen, NJ 08840

TERMS & CONDITIONS

Payment terms are Net 30 days to rated organizations or payment can be made by credit card. Orders are shipped FCA Metuchen, New Jersey, and are shipped in accordance with IATA or DOT regulations. All freight charges are prepaid and added to the invoice unless otherwise specified on your order.

Contact our Sales Department for a Return Authorization Number and instructions before shipping. Unauthorized returns will be refused. Transportation is the responsibility of the customer; all materials must be packed, marked, labeled, and shipped in accordance with regulations governing transportation of hazardous materials, if applicable. Credit for returned merchandise will be issued only if goods are unopened, resalable and received within 30 days of the original invoice date. Returned items are subject to a 25% restocking fee.

Purchaser's sole and exclusive remedy for damages and seller's sole and exclusive liability for damages for any cause whatsoever, including alleged negligence, is limited to the refund of the purchase price of the product or replacement of the product at seller's election. In no event shall seller be liable for direct, indirect, incidental, or consequential damages, including lost profits.

Spex CertiPrep maintains authorized distributors in many countries around the world. Please visit the following web page at for a complete list of international distributors.

Spex CertiPrep products are not for any cosmetic, drug or household applications. Our acceptance of a purchase order is with the assumption that products will be used only by qualified individuals who are trained in appropriate procedures. Customers must ensure safe storage, handling and application of all products ordered from this catalog. We assume requisitioner's to be competent, safety-conscious professionals.

Spex CertiPrep offers Custom Certified Reference Materials because we realize that no two laboratories face exactly the same samples, or precisely the same requirements. In the real world, trace element determinations are performed in the presence of one or several major constituents, varying inter-element effects, matrix effects...the list goes on and on. These issues become increasingly important as you strive for greater reproducibility and push your technique to the limit and thereby require standards made specifically for your application.

With Spex CertiPrep's Custom Certified Reference Materials (CRMs) program, you can remove some of these variables. Select custom standards in connection with all product lines, from Single-Element and Multi-Element aqueous blends to Organometallic Oil Standards. Our sales specialists will be happy to discuss your applications/instrumentation, combination of elements, concentrations, and your preferred matrices. We will then design the most compatible, stable mixture using our comprehensive supply of starting materials and certified solutions. Simply tell us what standards you need and let our highly skilled chemists determine the optimum combinations for you.

Customized for your application Certified by ICP, ICP-MS, LC-ICP-MS, or IC analysis High quality starting materials tested for impurities prior to use Over 60 years of experience in manufacturing custom CRMs Manufactured and shipped within 5 business days Dedicated technical support to answer your CRM and lab questions

Assurance[®] Grade Standards for AA and ICP Claritas PPT[®] Grade Standards for ICP-MS Speciation Standards for LC-ICP-MS Ion Chromatography/Ion Selective Electrode Standards Organometallic Oil Standards Fusion Flux Consumer Safety Compliance Standards

OUR GUARANTEE

We will guarantee your custom standards for one year from the date of shipment and supply your standard with a comprehensive Certificate of Analysis. For Claritas PPT[®] custom standards, we will include an impurity analysis on your Certificate of Analysis.

To get started, contact our technical sales team at 732.549.7144 or visit: **spex.com/CustomProduct/InorganicProduct** with the following information:

Your specific application/instrumentation

- The elements or complexes you desire
- The concentration(s) at which you require each component
- component The matrix which you prefer (e.g., water, dilute acid, oil, etc.)

To ensure the validity of results from today's high-performance instrumentation, Spex CertiPrep has developed an extensive line of the highest quality certified reference materials. How can we prove it? The International Organization for Standardization (ISO) has established a set of guidelines designed to define common business practices, increase responsibility and ensure clarity and full disclosure in the industry. As shown below, there are three ISO quality management systems that are most relevant for reference material manufacturers - ISO 9001, ISO/IEC 17025 and ISO 17034.

Each level has its own set of internationally recognized criteria against which companies are formally measured. Each level is more difficult to achieve and fewer companies are able to meet the required criteria. Spex CertiPrep is proud to be accredited for all three. By taking the extra step of choosing to demonstrate our competence and comply with these standards, we are continuously proving that our tests and calibration results are technically competent and our products truly are of the highest quality.

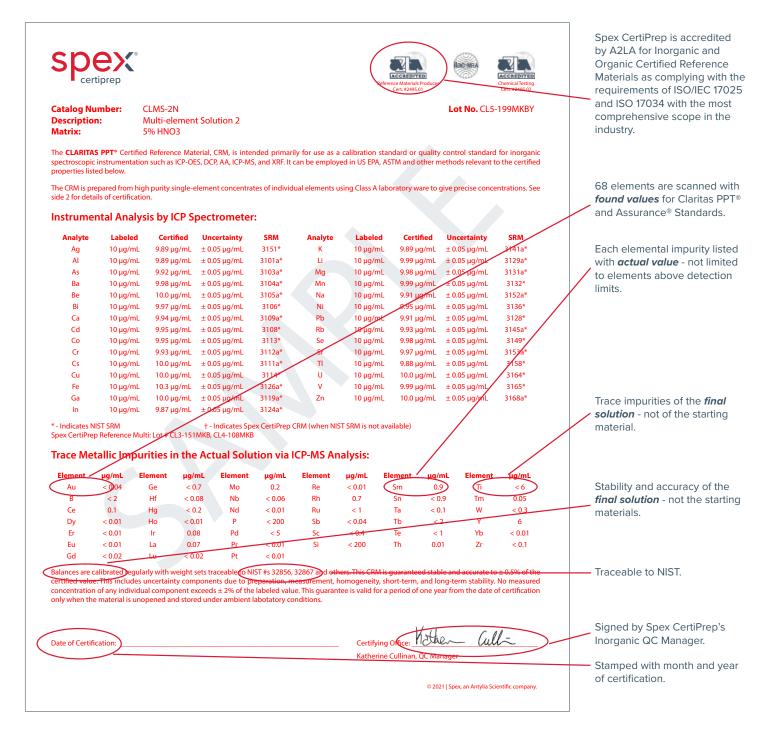
Levels of Accreditation - About Each Standard and What it Means to You

(all types of organizations) Certified by UL-DQS as an ISO 9001:2015 facility for our Quality Management System

Open to all types of organizations • Written procedures • Documented complaints

(testing and/or calibration labs) Accredited by A2LA as an ISO/IEC 17025:2017 Certified Chemical Testing Laboratory

Specifically for organizations carrying out testing and/or calibration • Competent at quality related tests • Consistent manufacturing


(reference material producers) Accredited by A2LA as an ISO 17034:2016 Certified Inorganic and Organic Reference Material Producer

Specifically for reference material producers • Validate methods to prove accuracy • Report uncertainty and sources of error

Did you know that our purchased starting materials are double tested to assure what is put in our products is of the highest quality?

Every accredited manufacturer of Certified Reference Materials supplies a Certificate of Analysis (COA) with their products. ISO Guide 31 and ISO 17034 outline the information required for a Certificate of Analysis. In order to comply with the ISO standards, an accredited CRM manufacturer must supply more than a dozen informational and analytical values such as certifying bodies, material descriptions, intended use, instructions for use, homogeneity, stability, certified values and their uncertainties, and traceability. Not all certificates are alike. Spex CertiPrep has been supplying some of the most comprehensive Certificates of Analysis in the CRM industry for years. Our certificates are easy to read and have all of the information an analyst would need to use our standards. We have highlighted what you should look for in a Certificate of Analysis and why our certificate is one of the best.

Spex Companies Overview

Spex CertiPrep has been servicing the scientific community since 1954. We have grown into the industry's most passionate and reliable manufacturer of Certified Reference Materials (CRMs) and Calibration Standards for Analytical Spectroscopy and Chromatography.

We are pleased to share with you the latest and greatest Spex CertiPrep Certified Reference Materials catalog. This flip-book style catalog includes our Inorganic Certified Reference Materials on one side and Organic Certified Reference Materials on the other.

Our primary focus is to provide Inorganic and Organic CRMs of the highest quality and superior customer support. The Inorganic Standards are manufactured for AA, ICP, ICP-MS, IC, XRF, and other analytical instrumentation. The Organic Standards are manufactured for GC, GC/MS, HPLC, LC/MS, and other analytical instrumentation.

Spex CertiPrep Group is accredited by A2LA to ISO/IEC 17025:2017 and ISO 17034:2016 and by DQS to ISO 9001:2015. Our accreditation is the most comprehensive in the industry and encompasses all of our manufactured products.

To request product catalogs, please contact us or visit our website at

Sample preparation is an important part of the quality control process. Spex SamplePrep's expertise and products can help analysts achieve accurate and consistent results by assuring reliable, reproducible samples.

Our sample preparation equipment products include cryogenic mills, cell lysers, pellet presses, ball mills, and automated fusion fluxers. We also provide XRF liquid cells, XRF window films and a selection of sample binders and grinding aids to simplify the sample preparation process. These products are used throughout the world in industrial, academic, research, and government laboratories. The uses cover many different fields of spectroscopy (XRF, ICP, ICP-MS, AA, IR) and their applications range from genetic research, forensics, geology, medicine, materials research, and agriculture.

We provide a Handbook of Sample Preparation and Handling that is known as a primary source of helpful advice for the preparation of samples. The topics covered in this handbook include grinding, pelletizing, fusion fluxing, and controlling contamination. Visit to learn more about our products, download the handbook or watch product demonstration videos.

- Made with acid and ASTM Type I Water
- Inorganic compounds and metals at 99.99& to 99.9999% purity (where commercially available)
- Directly traceable to NIST (where applicable)
- Certified by DQS to ISO 9001:2015
- Accredited by A2LA to ISO/IEC 17025:2017 and ISO 17034:2016

Assurance[®] Grade CRMs are designed for AA and ICP and are available in single and multi-element formulations. 70 elements are available as single-element standards and are available at 1,000 µg/mL and/or 10,000 µg/mL. They are packaged in 30 mL, 125 mL, 250 mL, and 500 mL bottles to minimize contamination. Custom standards can be manufactured upon request.

Assurance [®] Grade CRMs				
Designed For Use With	AA ICP			
Analytical Range For Use	ppm, ppb			
Single-Element Standards	\checkmark			
10 µg/mL	√ (Hg only)			
1,000 μg/mL	\checkmark			
10,000 μg/mL	\checkmark			
Multi-Element Standards	\checkmark			
Custom Standards	√			
ISO 9001:2015				
ISO/IEC 17025:2017	\checkmark			
ISO 17034:2016				
Traceable to NIST SRM (where applicable)	\checkmark			
Acid Grade	High Purity Grade			
# Trace Impurities Measured on Certificate of Analysis	68			
Trace Impurities Measured to	μg/mL			
30 mL	\checkmark			
125 mL	\checkmark			
250 mL	\checkmark			
500 mL	\checkmark			

Alumin	um	Atomic Number Atomic Mass Density Melting Point Boiling Point	13 26.982 2.7 g/cm³ 660 ℃ 2467 ℃
Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	PLAL2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLAL2-2Y
1,000 µg/mL	250 mL	2% HNO ₃	PLAL2-2T
1,000 µg/mL	500 mL	2% HNO ₃	PLAL2-2X
1,000 µg/mL	500 mL	2% HCI	PLAL1-2X
10,000 μg/mL	125 mL	5% HNO ₃	PLAL2-3Y
10,000 μg/mL	500 mL	5% HNO ₃	PLAL2-3X
10,000 μg/mL	500 mL	5% HCl	PLAL1-3X

Atomic Number	33
Atomic Mass	74.922
Density	5.727 g/cm ³
Melting Point	817 °C
Boiling Point	614 °C*
	Atomic Mass Density Melting Point

Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	PLAS2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLAS2-2Y
1,000 µg/mL	250 mL	2% HNO ₃	PLAS2-2T
1,000 µg/mL	500 mL	2% HNO ₃	PLAS2-2X
1,000 µg/mL	500 mL	2% HCI	PLAS1-2X
10,000 μg/mL	125 mL	5% HNO ₃	PLAS2-3Y
10,000 μg/mL	500 mL	5% HNO ₃	PLAS2-3X
			* Sublimation Point.

	Atomic Number	4
	Atomic Mass	9.012
	Density	1.848 g/cm ³
Beryllium	Melting Point	1287 °C
	Boiling Point	2471 °C

Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	PLBE2-2M
1,000 μg/mL	125 mL	2% HNO ₃	PLBE2-2Y
1,000 μg/mL	250 mL	2% HNO ₃	PLBE2-2T
1,000 μg/mL	500 mL	2% HNO ₃	PLBE2-2X
10,000 μg/mL	125 mL	5% HNO ₃	PLBE2-3Y
10,000 μg/mL	500 mL	5% HNO ₃	PLBE2-3X
CIENTISO	L, S.L.U.	WWW.	cientisol.com · info@d

Antimo			Atomic Number Atomic Mass Density Melting Point Boiling Point	6.6 63	1.760 97 g/cm³ 0 ℃ 87 ℃
Concentration	Volume		Matrix		Part #
1,000 µg/mL	30 mL	$H_2O/0.6\%$ Tartaric Acid/tr. HNO_3		PLSB7-2M	
1,000 µg/mL	125 mL	H ₂ O/0.6% Tartaric Acid/tr. HNO ₃		PLSB7-2Y	
1,000 µg/mL	250 mL	H ₂ O/0.6% Tartaric Acid/tr. HNO ₃		PLSB7-2T	
1,000 µg/mL	500 mL	H ₂ O/0.6% Tartaric Acid/tr. HNO ₃		PLSB7-2X	
1,000 μg/mL	500 mL	20% HCl		PLSB5-2X	
10,000 μg/mL	125 mL	H ₂ O/0.6% Tartaric Acid/1% HNO ₃ PL		PLSB7-3Y	
10,000 µg/mL	500 mL	H ₂ O	H ₂ O/0.6% Tartaric Acid/1% HNO ₃ PLSB7-3>		

		Atomic Number	56
ÞY		Atomic Mass	137.327
		Density	3.51 g/cm ³
Bariu	m	Melting Point	727 °C
		Boiling Point	1897 °C
Concentration	Volume	Matrix	Part #
1.000 µg/mL	30 mL	2% HNO.	PLBA2-2M

1,000 μg/mL	30 mL	2% HNO ₃	PLBA2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLBA2-2Y
1,000 μg/mL	250 mL	2% HNO ₃	PLBA2-2T
1,000 µg/mL	500 mL	2% HNO ₃	PLBA2-2X
10,000 μg/mL	125 mL	5% HNO ₃	PLBA2-3Y
10,000 μg/mL	500 mL	5% HNO ₃	PLBA2-3X

Bismu	th	Atomic Number Atomic Mass Density Melting Point Boiling Point	83 208.980 9.78 g/cm³ 271 ℃ 1564 ℃
Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	10% HNO ₃	PLBI4-2M
1,000 μg/mL	125 mL	10% HNO ₃	PLBI4-2Y

10% HNO

500 mL

1,000 µg/mL

PLBI4-2X

Boroi	n	Atomic Number Atomic Mass Density Melting Point Boiling Point	5 10.811 2.46 g/cm³ 2075 ℃ 4000 ℃
Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	H ₂ O	PLB9-2M
1,000 μg/mL	125 mL	H ₂ O	PLB9-2Y
1,000 μg/mL 1,000 μg/mL	125 mL 250 mL	H ₂ O H ₂ O	PLB9-2Y PLB9-2T
10		2	
1,000 μg/mL	250 mL	H ₂ O	PLB9-2T

Ca	Atomic Number Atomic Mass	20 40.078
	Density	1.55 g/cm ³
Calcium	Melting Point	842 °C
	Boiling Point	1484 °C

Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	PLCA2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLCA2-2Y
1,000 µg/mL	250 mL	2% HNO ₃	PLCA2-2T
1,000 µg/mL	500 mL	2% HNO ₃	PLCA2-2X
1,000 µg/mL	500 mL	2% HCI	PLCA1-2X
10,000 μg/mL	125 mL	5% HNO ₃	PLCA2-3Y
10,000 μg/mL	250 mL	5% HNO ₃	PLCA2-3T
10,000 μg/mL	500 mL	5% HNO ₃	PLCA2-3X
10,000 μg/mL	500 mL	5% HCl	PLCA1-3X

	Atomic Numbe	er 58
	Atomic Mass	140.116
	Density	6.689 g/cm ³
Cerium	Melting Point	798 °C
	Boiling Point	3424 °C

Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	PLCE2-2M
1,000 μg/mL	125 mL	2% HNO ₃	PLCE2-2Y
1,000 μg/mL	500 mL	2% HNO ₃	PLCE2-2X
10,000 μg/mL	125 mL	5% HNO ₃	PLCE2-3Y
10,000 μg/mL	500 mL	5% HNO ₃	PLCE2-3X

Cadmi	um	Atomic Number Atomic Mass Density Melting Point Boiling Point	48 112.411 8.65 g/cm³ 321 ℃ 767 ℃
Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	PLCD2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLCD2-2Y
1,000 µg/mL	250 mL	2% HNO ₃	PLCD2-2T
1,000 µg/mL	500 mL	2% HNO ₃	PLCD2-2X
10,000 μg/mL	125 mL	5% HNO ₃	PLCD2-3Y
10,000 μg/mL	500 mL	5% HNO ₃	PLCD2-3X

	Atomic Number	6
	Atomic Mass	12.011
	Density	2.26 g/cm ³
Carbon	Melting Point	3550 °C*
	Boiling Point	3825 °C*

Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	H ₂ O	PLC9-2M
1,000 μg/mL	125 mL	H ₂ O	PLC9-2Y
1,000 μg/mL	500 mL	H ₂ O	PLC9-2X

* Numbers provided are for graphite. Carbon sublimates at -78.5°C.

CS Cesium		Atomic Number Atomic Mass Density Melting Point Boiling Point	55 132.905 1.879 g/cm³ 28 ℃ 671 ℃
Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	PLCS2-2M

1,000 µg/mL	30 mL	2% HNO ₃	PLCS2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLCS2-2Y
1,000 µg/mL	500 mL	2% HNO ₃	PLCS2-2X
10,000 μg/mL	125 mL	5% HNO ₃	PLCS2-3Y
10,000 μg/mL	500 mL	5% HNO ₃	PLCS2-3X

Chromi		Atomic Number Atomic Mass Density Melting Point Boiling Point	24 51.996 7.14 g/cm³ 1907 ℃ 2671 ℃
Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	PLCR2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLCR2-2Y
1,000 µg/mL	250 mL	2% HNO ₃	PLCR2-2T
1,000 µg/mL	500 mL	2% HNO ₃	PLCR2-2X
1,000 µg/mL	500 mL	2% HCl	PLCR1-2X
1,000 μg/mL	500 mL	H ₂ O	PLCR9-2X
10,000 μg/mL	125 mL	5% HNO ₃	PLCR2-3Y
10,000 μg/mL	500 mL	5% HNO ₃	PLCR2-3X
10,000 μg/mL	500 mL	H ₂ O	PLCR9-3X

Coba		Atomic Number Atomic Mass Density Melting Point Boiling Point	27 58.933 8.9 g/cm³ 1495 ℃ 2927 ℃
Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	PLCO2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLCO2-2Y
1,000 µg/mL	250 mL	2% HNO ₃	PLCO2-2T
1,000 µg/mL	500 mL	2% HNO ₃	PLCO2-2X
1,000 µg/mL	500 mL	2% HCI	PLCO1-2X
10,000 µg/mL	125 mL	5% HNO ₃	PLCO2-3Y
10,000 µg/mL	500 mL	5% HNO₃	PLCO2-3X

	Atomic Number	29
	Atomic Mass	63.546
	Density	8.92 g/cm ³
Copper	Melting Point	1084 °C
	Boiling Point	2562 °C

Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	PLCU2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLCU2-2Y
1,000 µg/mL	250 mL	2% HNO ₃	PLCU2-2T
1,000 µg/mL	500 mL	2% HNO ₃	PLCU2-2X
1,000 μg/mL	500 mL	2% HCI	PLCU1-2X
10,000 µg/mL	125 mL	5% HNO₃	PLCU2-3Y
10,000 μg/mL	500 mL	5% HNO ₃	PLCU2-3X
10,000 µg/mL	500 mL	5% HCl	PLCU1-3X

	Boiling Point	2567 °C
Dysprosium	Melting Point	1412 °C
	Density	8.551 g/cm ³
	Atomic Mass	162.5
	Atomic Number	66

1,000 μg/mL	30 mL	2% HNO ₃	PLDY2-2M
1,000 μg/mL	125 mL	2% HNO ₃	PLDY2-2Y
1,000 μg/mL	500 mL	2% HNO3	PLDY2-2X

Erbium		Atomic Number Atomic Mass	68 167.259
		Density Melting Point	9.066 g/cm³ 1529 ℃
LINIG	LIDIUIII		2868 °C
Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	PLER2-2M
1,000 μg/mL	125 mL	2% HNO ₃	PLER2-2Y
1,000 μg/mL	500 mL	2% HNO ₃	PLER2-2X

Europi	um	Atomic Number Atomic Mass Density Melting Point Boiling Point	63 151.964 5.244 g/cm³ 822 ℃ 1529 ℃
Concentration Volume		Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	PLEU2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLEU2-2Y
1,000 µg/mL	500 mL	2% HNO ₃	PLEU2-2X

31

69.723 5.904 g/cm³ 30 °C

2204 °C

Part # PLGA2-2M

PLGA2-2Y

PLGA2-2X

79

196.967 19.3 g/cm³ 1064 °C

2970 °C

Part #

PLAU3-2M

PLAU3-2Y

PLAU3-2X

67

164.930

2720 °C

8.795 g/cm³ 1461 °C

> Part # PLHO2-2M

PLHO2-2Y

PLHO2-2X

G	0	Atomic Number Atomic Mass	64 157.25	G	a	Atomic Number Atomic Mass
		Density	7.9 g/cm ³			Density
Gadolin	nium	Melting Point Boiling Point	1312 ℃ 3266 ℃	Galliu	m	Melting Point Boiling Point
Concentration	Volume	Matrix	Part #	Concentration	Volume	Matrix
1,000 μg/mL	30 mL	2% HNO ₃	PLGD2-2M	1,000 μg/mL	30 mL	2% HNO ₃
1,000 µg/mL	125 mL	2% HNO ₃	PLGD2-2Y	1,000 μg/mL	125 mL	2% HNO ₃
1,000 µg/mL	500 mL	2% HNO ₃	PLGD2-2X	1,000 μg/mL	500 mL	2% HNO ₃
10,000 µg/mL	125 mL	5% HNO ₃	PLGD2-3Y			
10,000 μg/mL	500 mL	5% HNO ₃	PLGD2-3X			
G	9	Atomic Number Atomic Mass Density	32 72.63 5.323 g/cm ³	Α		Atomic Number Atomic Mass Density
Germar	nium	Melting Point Boiling Point	938 ℃ 2833 ℃	Gold	I	Melting Point Boiling Point
	nium Volume			Gold	Volume	
ncentration		Boiling Point	2833 ℃			Boiling Point
	Volume	Boiling Point Matrix	2833 °C Part #	Concentration	Volume	Boiling Point Matrix
Concentration 1,000 μg/mL	Volume 30 mL	Boiling Point Matrix H ₂ O/0.16% F ⁻	2833 °C Part # PLGE9-2M	Concentration 1,000 μg/mL	Volume 30 mL	Boiling Point Matrix 10% HCI
Concentration 1,000 µg/mL 1,000 µg/mL	Volume 30 mL 125 mL 500 mL	Boiling Point Matrix H ₂ O/0.16% F ⁻ H ₂ O/0.16% F ⁻	2833 ℃ Part # PLGE9-2M PLGE9-2Y	Concentration 1,000 μg/mL 1,000 μg/mL	Volume 30 mL 125 mL 500 mL	Boiling Point Matrix 10% HCl 10% HCl
oncentration 1,000 μg/mL 1,000 μg/mL 1,000 μg/mL Hafnit	Volume 30 mL 125 mL 500 mL	Boiling Point Matrix H ₂ O/0.16% F ⁻ H ₂ O/0.16% F ⁻ H ₂ O/0.16% F ⁻ Atomic Number Atomic Mass Density Melting Point	2833 ℃ Part # PLGE9-2M PLGE9-2Y PLGE9-2X 72 178.49 13.31 g/cm ³ 2233 ℃	Сопcentration 1,000 µg/mL 1,000 µg/mL 1,000 µg/mL	Volume 30 mL 125 mL 500 mL	Boiling Point Matrix 10% HCl 10% HCl 10% HCl Atomic Number Atomic Mass Density Melting Point
Concentration 1,000 μg/mL 1,000 μg/mL 1,000 μg/mL Hafnit	Volume 30 mL 125 mL 500 mL	Boiling Point Matrix H ₂ O/0.16% F ⁻ H ₂ O/0.16% F ⁻ H ₂ O/0.16% F ⁻ Atomic Number Atomic Mass Density Melting Point Boiling Point	2833 ℃ Part # PLGE9-2M PLGE9-2Y PLGE9-2X 72 178.49 13.31 g/cm ³ 2233 ℃ 4603 ℃	Сопсепtration 1,000 µg/mL 1,000 µg/mL 1,000 µg/mL Ноlmiu	Volume 30 mL 125 mL 500 mL	Boiling Point Matrix 10% HCl 10% HCl 10% HCl Atomic Number Atomic Mass Density Melting Point Boiling Point
Concentration 1,000 μg/mL 1,000 μg/mL 1,000 μg/mL Hafnit	Volume 30 mL 125 mL 500 mL M Volume	Boiling Point Matrix H ₂ O/0.16% F ⁻ H ₂ O/0.16% F ⁻ H ₂ O/0.16% F ⁻ Atomic Number Atomic Mass Density Melting Point Boiling Point Boiling Point	2833 ℃ Part # PLGE9-2M PLGE9-2Y PLGE9-2X 72 178.49 13.31 g/cm ³ 2233 ℃ 4603 ℃ Part #	Concentration 1,000 μg/mL 1,000 μg/mL 1,000 μg/mL Holmiu	Volume 30 mL 125 mL 500 mL 0 100 100 100 Volume	Boiling Point Matrix 10% HCl 10% HCl 10% HCl Atomic Number Atomic Mass Density Melting Point Boiling Point Boiling Point

Be sure to check out our Interactive Periodic Table for comprehensive details and information for all elements including appearance, applications and complete property details. Visit

1,000 µg/mL

Single-Element Standards for AA & ICP

Indiu	m	Atomic Number Atomic Mass Density Melting Point Boiling Point	49 114.818 7.31 g/cm³ 157 ℃ 2072 ℃
Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	PLIN2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLIN2-2Y

2% HNO,

PLIN2-2X

500 mL

Fe		Atomic Number Atomic Mass Density Melting Point Boiling Point	26 55.845 7.874 g/cm³ 1538 ℃ 2861 ℃
Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	PLFE2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLFE2-2Y
1,000 µg/mL	250 mL	2% HNO ₃	PLFE2-2T
1,000 μg/mL	500 mL	2% HNO ₃	PLFE2-2X
1,000 μg/mL	500 mL	2% HCI	PLFE1-2X
10,000 μg/mL	125 mL	5% HNO ₃	PLFE2-3Y
10,000 μg/mL	500 mL	5% HNO ₃	PLFE2-3X
10,000 μg/mL	500 mL	5%HCI	PLFE1-3X

Commentation Malance	NA - A - i	D
	Boiling Point	4428 °C
Iridium	Melting Point	2446 °C
	Density	22.56 g/cm ³
	Atomic Mass	192.217
	Atomic Number	77

concentration	volume	INIALITX	Fall#
1,000 μg/mL	30 mL	10% HCl	PLIR3-2M
1,000 μg/mL	125 mL	10% HCl	PLIR3-2Y
1,000 μg/mL	500 mL	10% HCl	PLIR3-2X

La	
Lanthanum	

57
138.905
6.146 g/cm ³
920 °C
3464 °C

Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	PLLA2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLLA2-2Y
1,000 µg/mL	500 mL	2% HNO ₃	PLLA2-2X
10,000 μg/mL	125 mL	5% HNO ₃	PLLA2-3Y
10,000 μg/mL	500 mL	5% HNO ₃	PLLA2-3X

Li	Atomic Number Atomic Mass	3 6.941
Lithium	Density	0.535 g/cm ³
	Melting Point	181 °C
	Boiling Point	1342 °C

Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	PLLI2-2M
1,000 μg/mL	125 mL	2% HNO ₃	PLLI2-2Y
1,000 μg/mL	500 mL	2% HNO ₃	PLLI2-2X
1,000 μg/mL	500 mL	2% HCI	PLLI1-2X
10,000 μg/mL	125 mL	5% HNO ₃	PLLI2-3Y
10,000 μg/mL	500 mL	5% HNO ₃	PLLI2-3X
10,000 μg/mL	500 mL	5% HCl	PLLI1-3X

_		
Pb Lead	Atomic Number	82
	Atomic Mass	207.2
	Density	11.34 g/cm ³
	Melting Point	327 °C
	Boiling Point	1749 °C

Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	PLPB2-2M
1,000 μg/mL	125 mL	2% HNO ₃	PLPB2-2Y
1,000 μg/mL	250 mL	2% HNO ₃	PLPB2-2T
1,000 μg/mL	500 mL	2% HNO ₃	PLPB2-2X
10,000 μg/mL	125 mL	5% HNO ₃	PLPB2-3Y
10,000 μg/mL	500 mL	5% HNO ₃	PLPB2-3X

Lutetiu		Atomic Number Atomic Mass Density Melting Point Boiling Point	71 174.967 9.841 g/cm³ 1663 ℃ 3402 ℃	Magnesi	
Concentration	Volume	Matrix	Part #	Concentration	١
1,000 μg/mL	30 mL	2% HNO ₃	PLLU2-2M	1,000 μg/mL	
1,000 μg/mL	125 mL	2% HNO ₃	PLLU2-2Y	1,000 μg/mL	
1,000 μg/mL	500 mL	2% HNO ₃	PLLU2-2X	1,000 μg/mL	
				1,000 μg/mL	
				1,000 μg/mL	
				10,000 μg/mL	
				10,000 μg/mL	
				10,000 μg/mL	
Mangar		Atomic Number Atomic Mass Density Melting Point Boiling Point	25 54.938 7.47 g/cm³ 1247 ℃ 2061 ℃	Mercu	ry
Concentration	Volume	Matrix	Part #	Concentration	Ŋ
1,000 μg/mL	30 mL	2% HNO ₃	PLMN2-2M	10 μg/mL	
1,000 μg/mL	125 mL	2% HNO ₃	PLMN2-2Y	10 μg/mL	
1,000 μg/mL	250 mL	2% HNO ₃	PLMN2-2T	100 μg/mL	
1,000 μg/mL	500 mL	2% HNO ₃	PLMN2-2X	100 μg/mL	
10,000 μg/mL	125 mL	5% HNO ₃	PLMN2-3Y	1,000 μg/mL	
10,000 μg/mL	500 mL	5% HNO ₃	PLMN2-3X	1,000 μg/mL	
				1,000 μg/mL	
				1,000 μg/mL	

Magnes		Atomic Number Atomic Mass Density Melting Point Boiling Point	12 24.305 1.738 g/cm³ 650 ℃ 1090 ℃
Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	PLMG2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLMG2-2Y
1,000 µg/mL	250 mL	2% HNO ₃	PLMG2-2T
1,000 µg/mL	500 mL	2% HNO ₃	PLMG2-2X
1,000 µg/mL	500 mL	2% HCI	PLMG1-2X
10,000 µg/mL	125 mL	5% HNO ₃	PLMG2-3Y
10,000 μg/mL	500 mL	5% HNO ₃	PLMG2-3X
10,000 μg/mL	500 mL	5% HCl	PLMG1-3X

Hg Mercury		Atomic Number Atomic Mass Density Melting Point Boiling Point	80 200.59 13.534 g/cm ³ -39 ℃ 356 ℃
Concentration	Volume	Matrix	Part #
10 µg/mL	125 mL	5% HNO ₃	PLHG2-1AY
10 μg/mL 500 mL		5% HNO ₃	PLHG2-1AX
100 μg/mL 125 mL		5% HNO ₃	PLHG2-1Y

5% HNO,

10% HNO

10% HNO

10% HNO,

10% HNO

10% HNO

10% HNO,

PLHG2-1X

PLHG4-2M

PLHG4-2Y

PLHG4-2T

PLHG4-2X

PLHG4-3Y

PLHG4-3X

500 mL

30 mL

125 mL

250 mL

500 mL

125 mL

500 mL

10,000 µg/mL

10,000 µg/mL

Do you have a technical CRM question for our experienced chemists? We are here to help. Submit your question to

10,000 µg/mL 10,000 µg/mL

Concentration

1,000 µg/mL

1,000 µg/mL

1,000 µg/mL

1,000 µg/mL

10,000 µg/mL

10,000 µg/mL

Ni

Nickel

Single-Element Standards for AA & ICP

Mo Molybdenum		Atomic Number Atomic Mass Density Melting Point Boiling Point	42 95.96 10.28 g/cm ³ 2623 ℃ 4639 ℃
Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	H ₂ O	PLMO9-2M
1,000 μg/mL 125 mL 1,000 μg/mL 250 mL		H ₂ O	PLMO9-2Y
		H ₂ O	PLMO9-2T
1,000 µg/mL	500 mL	H,O	PLMO9-2X

H,O

Н,О

Atomic Number

Atomic Mass

Melting Point

Boiling Point

Matrix

2% HNO.

2% HNO

2% HNO

2% HNO.

5% HNO

5% HNO

Density

125 mL

500 mL

Volume

30 mL

125 mL

250 mL

500 mL

125 mL

500 mL

Nd		Atomic Number Atomic Mass	60 144.242 7.01 g/cm ³
Neodymium		Density Melting Point Boiling Point	7.01 g/cm³ 1024 ℃ 3074 ℃
Concentration Volume		Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	PLND2-2M
1,000 μg/mL 125 mL		2% HNO ₃	PLND2-2Y
1,000 μg/mL 500 mL		2% HNO ₃	PLND2-2X

28		Atomic Number	41
58.693		Atomic Mass	92.906
8.908 g/cm ³		Density	8.57 g/cm ³
1455 °C	Niobium	Melting Point	2477 °C
2913 °C		Boiling Point	4744 °C

Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	H ₂ O/0.4% HF	PLNB9-2M
1,000 µg/mL	125 mL	H ₂ O/0.4% HF	PLNB9-2Y
1,000 µg/mL	500 mL	H ₂ O/0.4% HF	PLNB9-2X
10,000 μg/mL	125 mL	H ₂ O/0.4% HF	PLNB9-3Y
10,000 μg/mL	500 mL	H ₂ O/0.4% HF	PLNB9-3X

P Phosphorus		Atomic Number Atomic Mass Density Melting Point Boiling Point	15 30.974 1.823 g/cm³ 44 ℃ 277 ℃
Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	H ₂ O	PLP9-2M
1,000 µg/mL	125 mL	H ₂ O	PLP9-2Y
1,000 µg/mL	250 mL	H ₂ O	PLP9-2T

Н,О

H₂O

H,O

500 mL

125 mL

500 mL

Pd	
Palladium	

Atomic Number	46
Atomic Mass	106.42
Density	12.023 g/cm ³
Melting Point	1555 °C
Boiling Point	2963 °C

PLMO9-3Y

PLMO9-3X

Part #

PLNI2-2M PLNI2-2Y

PLNI2-2T

PLNI2-2X

PLNI2-3Y PLNI2-3X

Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	10% HCI	PLPD3-2M
1,000 µg/mL	125 mL	10% HCI	PLPD3-2Y
1,000 µg/mL	500 mL	10% HCl	PLPD3-2X

1,000 µg/mL

10,000 µg/mL

10,000 µg/mL

PLP9-2X

PLP9-3Y

PLP9-3X

Pt Platinum		Atomic Number Atomic Mass Density Melting Point Boiling Point	78 195.064 21.09 g/cm³ 1768 ℃ 3825 ℃
Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	10% HCI	PLPT3-2M
1,000 μg/mL	125 mL	10% HCI	PLPT3-2Y
1,000 μg/mL	500 mL	10% HCI	PLPT3-2X

Potassi	um	Atomic Number Atomic Mass Density Melting Point Boiling Point	19 39.098 0.856 g/cm³ 63 ℃ 759 ℃
Concentration	Volume	Matrix	Part #1,000
1,000 μg/mL	30 mL	2% HNO ₃	PLK2-2M
1,000 μg/mL	125 mL	2% HNO ₃	PLK2-2Y
1,000 μg/mL	250 mL	2% HNO ₃	PLK2-2T
1,000 μg/mL	500 mL	2% HNO ₃	PLK2-2X
1,000 μg/mL	500 mL	2% HCl	PLK1-2X
10,000 μg/mL	125 mL	5% HNO ₃	PLK2-3Y
10,000 μg/mL	500 mL	5% HNO ₃	PLK2-3X
10,000 μg/mL	500 mL	5% HCl	PLK1-3X

	Atomic Number	59
	Atomic Mass	140.908
	Density	6.64 g/cm ³
Praseodvmium	Melting Point	935 °C
, , , , , , , , , , , , , , , , , , , ,	Boiling Point	3520 °C
Praseodymium		

Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	PLPR2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLPR2-2Y
1,000 µg/mL	500 mL	2% HNO ₃	PLPR2-2X

Atomic Number

45

Do	Atomic Number	75
	Atomic Mass	186.207
	Density	21.02 g/cm ³
Rhenium	Melting Point	3186 °C
	Boiling Point	5596 °C
	bolling rollit	5570 C

Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	H ₂ O	PLRE9-2M
1,000 μg/mL	125 mL	H ₂ O	PLRE9-2Y
1,000 μg/mL	500 mL	H ₂ O	PLRE9-2X

Rb Rubidium		Atomic Number Atomic Mass Density Melting Point Boiling Point	37 85.467 1.532 g/cm ³ 39 ℃ 688 ℃
Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	PLRB2-2M
1,000 μg/mL	125 mL	2% HNO ₃	PLRB2-2Y
1,000 µg/mL	500 mL	2% HNO ₃	PLRB2-2X

		Atomic Mass	102.905
		Density	12.45 g/cm ³
Rhodium		Melting Point	1964 °C
		Boiling Point	3695 °C
Concentration	Volume	Matrix	Part #
Concentration 1,000 µg/mL	Volume 30 mL	Matrix 10% HCl	Part # PLRH3-2M

CIENTISOL, S.L.U.

Ruthen	ium	Atomic Number Atomic Mass Density Melting Point Boiling Point	44 101.07 12.37 g/cm³ 2334 ℃ 4150 ℃	
Concentration	Volume	Matrix	Part #	l
1,000 μg/mL	30 mL	10% HCl	PLRU3-2M	
1,000 μg/mL	125 mL	10% HCl	PLRU3-2Y	
1,000 μg/mL	500 mL	10% HCl	PLRU3-2X	

Sc	Atomic Number Atomic Mass	21 44.956
	Density	2.985 g/cm ³
Scandium	Melting Point	1541 °C
	Boiling Point	2836 °C

Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	PLSC2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLSC2-2Y
1,000 µg/mL	250 mL	2% HNO ₃	PLSC2-2T
1,000 µg/mL	500 mL	2% HNO ₃	PLSC2-2X
10,000 μg/mL	125 mL	5% HNO ₃	PLSC2-3Y
10,000 μg/mL	500 mL	5% HNO ₃	PLSC2-3X

Silico		Atomic Number Atomic Mass Density Melting Point Boiling Point	14 28.085 2.33 g/cm³ 1414 ℃ 3265 ℃
Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	H ₂ O/0.4% F ⁻	PLSI9-2M
1,000 µg/mL	125 mL	H ₂ O/0.4% F ⁻	PLSI9-2Y
1,000 µg/mL	250 mL	H ₂ O/0.4% F ⁻	PLSI9-2T
1,000 µg/mL	500 mL	H ₂ O/0.4% F ⁻	PLSI9-2X
1,000 µg/mL	500 mL	H ₂ O	PLSI9A-2X
10,000 µg/mL	125 mL	H ₂ O/4% F ⁻	PLSI9-3Y
10,000 µg/mL	500 mL	H ₂ O/4% F ⁻	PLSI9-3X
10,000 µg/mL	500 mL	H ₂ O	PLSI9A-3X

Sn Samari		Atomic Number Atomic Mass Density Melting Point Boiling Point	62 150.36 7.353 g/cm³ 1072 ℃ 1790 ℃
Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	PLSM2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLSM2-2Y
1,000 µg/mL	500 mL	2% HNO ₃	PLSM2-2X

Se Selenium	Atomic Number Atomic Mass Density Melting Point Boiling Point	34 78.96 4.819 g/cm³ 221 ℃ 685 ℃
Concentration Volume	Matrix	Part #

Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	PLSE2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLSE2-2Y
1,000 µg/mL	250 mL	2% HNO ₃	PLSE2-2T
1,000 µg/mL	500 mL	2% HNO ₃	PLSE2-2X
10,000 μg/mL	125 mL	5% HNO ₃	PLSE2-3Y
10,000 μg/mL	500 mL	5% HNO ₃	PLSE2-3X

Silve		Atomic Number Atomic Mass Density Melting Point Boiling Point	47 107.868 10.49 g/cm³ 962 ℃ 2162 ℃
Concentration	Volume	Matrix	Part #
	volume	IVIALITA	Fait#
1,000 μg/mL	30 mL	2% HNO ₃	PLAG2-2M
1,000 μg/mL	30 mL	2% HNO ₃	PLAG2-2M
1,000 μg/mL 1,000 μg/mL	30 mL 125 mL	2% HNO ₃ 2% HNO ₃	PLAG2-2M PLAG2-2Y
1,000 µg/mL 1,000 µg/mL 1,000 µg/mL	30 mL 125 mL 250 mL	2% HNO ₃ 2% HNO ₃ 2% HNO ₃	PLAG2-2M PLAG2-2Y PLAG2-2T

N a Sodiu		Atomic Number Atomic Mass Density Melting Point Boiling Point	11 22.989 0.968 g/cm³ 98 ℃ 883 ℃
Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	PLNA2-2M
1,000 μg/mL	125 mL	2% HNO ₃	PLNA2-2Y
1,000 µg/mL	250 mL	2% HNO ₃	PLNA2-2T
1,000 µg/mL	500 mL	2% HNO ₃	PLNA2-2X
1,000 μg/mL	500 mL	2% HCI	PLNA1-2X
10,000 μg/mL	125 mL	5% HNO ₃	PLNA2-3Y
10,000 μg/mL	500 mL	5% HNO ₃	PLNA2-3X
10,000 μg/mL	500 mL	5% HCI	PLNA1-3X

_		
C	Atomic Number	16
	Atomic Mass	32.065
	Density	1.96 g/cm ³
Sulfur	Melting Point	115 °C
	Boiling Point	445 °C

Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	H ₂ O	PLS9-2M
1,000 µg/mL	125 mL	H ₂ O	PLS9-2Y
1,000 µg/mL	250 mL	H ₂ O	PLS9-2T
1,000 µg/mL	500 mL	H ₂ O	PLS9-2X
10,000 μg/mL	125 mL	H ₂ O	PLS9-3Y
10,000 μg/mL	500 mL	H ₂ O	PLS9-3X

Te Tellurium		Atomic Number Atomic Mass Density Melting Point Boiling Point	52 127.6 6.24 g/cm³ 449 ℃ 988 ℃
Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	10% HNO ₃	PLTE4-2M
1,000 μg/mL	125 mL	10% HNO ₃	PLTE4-2Y
1.000 µg/mL 500 mL		10% HNO	PLTE4-2X

Sr Strontium		Atomic Number Atomic Mass Density Melting Point Boiling Point	38 87.62 2.63 g/cm³ 777 ℃ 1382 ℃
Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	PLSR2-2M
1,000 μg/mL	125 mL	2% HNO ₃	PLSR2-2Y
1,000 μg/mL	250 mL	2% HNO ₃	PLSR2-2T
1,000 μg/mL	500 mL	2% HNO ₃	PLSR2-2X
1,000 μg/mL	500 mL	2% HCI	PLSR1-2X
10,000 μg/mL	125 mL	5% HNO ₃	PLSR2-3Y
10,000 µg/mL	500 mL	5% HNO ₃	PLSR2-3X

Tantalum	Melting Point Boiling Point	3017 °C 5458 °C
	Density	16.65 g/cm ³
Ta	Atomic Number Atomic Mass	73 180.947

Concentration	volume	INIALITX	Fait#
1,000 µg/mL	30 mL	H ₂ O/0.8% HF	PLTA9-2M
1,000 µg/mL	125 mL	H ₂ O/0.8% HF	PLTA9-2Y
1,000 µg/mL	500 mL	H ₂ O/0.8% HF	PLTA9-2X
10,000 μg/mL	125 mL	H ₂ O/0.8% HF	PLTA9-3Y
10,000 μg/mL	500 mL	H ₂ O/0.8% HF	PLTA9-3X

Terbiu) Im	Atomic Number Atomic Mass Density Melting Point Boiling Point	65 158.925 8.219 g/cm³ 1356 ℃ 3230 ℃
Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	PLTB2-2M
1,000 μg/mL	125 mL	2% HNO ₃	PLTB2-2Y
1,000 μg/mL	500 mL	2% HNO ₃	PLTB2-2X

Thallium		Atomic Number Atomic Mass Density Melting Point Boiling Point	81 204.383 11.85 g/cm³ 304 ℃ 1473 ℃
Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	PLTL2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLTL2-2Y
1,000 µg/mL	250 mL	2% HNO ₃	PLTL2-2T
1,000 μg/mL	500 mL	2% HNO ₃	PLTL2-2X

Concentration	Volume	Matrix	Part #
		Boiling Point	1950 °C
Tm		Melting Point	1545 °C
		Density	9.321 g/cm ³
		Atomic Mass	168.934
		Atomic Number	69

concentration	Volume	matrix	1 41 6 #
1,000 μg/mL	30 mL	2% HNO ₃	PLTM2-2M
1,000 μg/mL	125 mL	2% HNO ₃	PLTM2-2Y
1,000 μg/mL	500 mL	2% HNO ₃	PLTM2-2X

Thorium (Depleted)		Atomic Number Atomic Mass Density Melting Point Boiling Point	90 232.038 11.724 g/cm³ 1842 ℃ 4788 ℃
Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	PLTH2-2M
1,000 μg/mL	125 mL	2% HNO ₃	PLTH2-2Y
1,000 µg/mL	500 mL	2% HNO ₃	PLTH2-2X

Sn Tin		Atomic Number Atomic Mass Density Melting Point Boiling Point	50 118.71 7.31 g/cm³ 232 ℃ 2602 ℃
Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	20% HCI	PLSN5-2M
1,000 µg/mL	125 mL	20% HCI	PLSN5-2Y
1,000 µg/mL	250 mL	20% HCI	PLSN5-2T
1,000 µg/mL	500 mL	20% HCI	PLSN5-2X
1,000 µg/mL	500 mL	1% HNO ₃ /1% HF	PLSN2-2X
10,000 µg/mL	125 mL	20% HCI	PLSN5-3Y
10,000 μg/mL	500 mL	20% HCI	PLSN5-3X
10,000 µg/mL	500 mL	2% HNO ₃ /2% HF	PLSN2-3X

Concentration	Volume	Matrix	Part #
2		Boiling Point	5555 °C
Tungsten		Melting Point	3422 °C
VV		Density	19.25 g/cm ³
		Atomic Mass	183.84
		Atomic Number	74

Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	H ₂ O	PLW9-2M
1,000 µg/mL	125 mL	H ₂ O	PLW9-2Y
1,000 µg/mL	500 mL	H ₂ O	PLW9-2X
1,000 µg/mL	500 mL	1% HNO ₃ /2% HF	PLW2-2X
10,000 μg/mL	125 mL	H ₂ O	PLW9-3Y
10,000 μg/mL	500 mL	H ₂ O	PLW9-3X
10,000 μg/mL	500 mL	2% HNO ₃ /5% HF	PLW2-3X
		·	

Ti	
Titanium	

Atomic Number	22
Atomic Mass	47.857
Density	4.507 g/cm ³
Melting Point	1668 °C
Boiling Point	3287 °C

Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	H ₂ O/0.24% F ⁻	PLTI9-2M
1,000 μg/mL	125 mL	H ₂ O/0.24% F ⁻	PLTI9-2Y
1,000 μg/mL	250 mL	H ₂ O/0.24% F ⁻	PLTI9-2T
1,000 μg/mL	500 mL	H ₂ O/0.24% F ⁻	PLTI9-2X
1,000 μg/mL	500 mL	20% HCI	PLTI5-2X
10,000 μg/mL	125 mL	H ₂ O/2.4% F ⁻	PLTI9-3Y
10,000 μg/mL	500 mL	H ₂ O/2.4% F ⁻	PLTI9-3X
10,000 μg/mL	500 mL	40% HCI	PLTI5-3X

PLY2-3Y

PLY2-3X

Uranium (Depleted)		Atomic Number Atomic Mass Density Melting Point Boiling Point	92 238.027 19.05 g/cm³ 1132 ℃ 4131 ℃
Concentration Volume		Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	PLU2-2M
1,000 μg/mL	125 mL	2% HNO ₃	PLU2-2Y
1,000 μg/mL	500 mL	2% HNO ₃	PLU2-2X
10,000 μg/mL	125 mL	5% HNO ₃	PLU2-3Y
10,000 μg/mL	500 mL	5% HNO	PLU2-3X

Ytterbi	um	Atomic Number Atomic Mass Density Melting Point Boiling Point	70 173.054 6.57 g/cm³ 824 ℃ 1196 ℃
Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	PLYB2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLYB2-2Y
1,000 µg/mL	500 mL	2% HNO ₃	PLYB2-2X

Vanadi	um	Atomic Number Atomic Mass Density Melting Point Boiling Point	23 50.941 6.11 g/cm³ 1910 ℃ 3407 ℃
Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	PLV2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLV2-2Y
1,000 µg/mL	500 mL	2% HNO ₃	PLV2-2X
1,000 µg/mL	500 mL	2%HCI	PLV1-2X
10,000 μg/mL	125 mL	15% HNO ₃	PLV4-3Y
10,000 μg/mL	500 mL	15% HNO ₃	PLV4-3X
10,000 μg/mL	500 mL	15% HCI	PLV3-3X

Yttriu	m	Atomic Number Atomic Mass Density Melting Point Boiling Point	39 88.906 4.472 g/cm³ 1526 ℃ 3336 ℃
Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	PLY2-2M
1,000 µg/mL	125 mL	2% HNO ₃	PLY2-2Y
1,000 µg/mL	250 mL	2% HNO ₃	PLY2-2T
1,000 μg/mL	500 mL	2% HNO ₃	PLY2-2X

Zr	Atomic Number Atomic Mass Density	40 91.224 6.511 g/cm ³
Zirconium	Melting Point Boiling Point	0.311 g/cm 1855 ℃ 4409 ℃

5% HNO,

5% HNO₃

125 mL

500 mL

Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	PLZR2-2M
1,000 μg/mL	125 mL	2% HNO ₃	PLZR2-2Y
1,000 μg/mL	250 mL	2% HNO ₃	PLZR2-2T
1,000 μg/mL	500 mL	2% HNO ₃	PLZR2-2X
1,000 μg/mL	500 mL	10% HCI	PLZR3-2X
10,000 μg/mL	125 mL	5% HNO ₃	PLZR2-3Y
10,000 μg/mL	500 mL	5% HNO ₃	PLZR2-3X
10,000 μg/mL	500 mL	10% HCI	PLZR3-3X

CIENTISOL, S.L.U.

Atomic Number	30
Atomic Mass	65.38
Density	7.14 g/cm ³
Melting Point	419 °C
Boiling Point	907 °C

Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	PLZN2-2M
1,000 μg/mL	125 mL	2% HNO ₃	PLZN2-2Y
1,000 μg/mL	250 mL	2% HNO ₃	PLZN2-2T
1,000 µg/mL	500 mL	2% HNO ₃	PLZN2-2X
1,000 μg/mL	500 mL	2% HCI	PLZN1-2X
10,000 μg/mL	125 mL	5% HNO ₃	PLZN2-3Y
10,000 μg/mL	500 mL	5% HNO ₃	PLZN2-3X
10,000 μg/mL	500 mL	5% HCI	PLZN1-3X

www.cientisol.com · info@cientisol.com · 981 936 338 Phone: +1.732.549.7144 • +1.800.LAB.SPEX

10,000 µg/mL

10,000 µg/mL

May be used to dilute your multi-element standards or can be run directly as a blank to establish your base line. Do not use any acid or water as a diluent if you are not certain of its purity.

Element	Volume	Matrix	Part #
Nitric Acid Blank	500 mL	5% HNO ₃	PLBLK-HNO3
Hydrochloric Acid Blank	500 mL	5% HCl	PLBLK-HCL
DI Water Blank	500 mL	H ₂ O	PLBLK-H2O
DI Water Blank	1 L	H ₂ O	PLBLK-H2O-1L
DI Water Blank	2 L	H ₂ O	PLBLK-H2O-2L
DI Water Blank	4 L	H ₂ O	PLBLK-H2O-4L

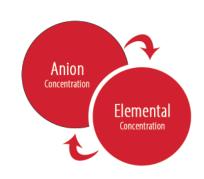
Assurance[®] Grade, Set of 38 Single-Element Standards.

Element	Concentration	Volume	Matrix	Part #
Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sc, Se, Sr, Tl, V, Y, Zn, Zr			2% HNO ₃	
Bi, Hg			10% HNO ₃	
Sn	1,000 μg/mL each	125 mL each	20% HCI	ICP-KIT-1
B, Mo, P, S, W			H ₂ O	
Sb			H ₂ O/0.6% Tartaric Acid/tr. HNO ₃	
Ti			H ₂ O/0.24% F ⁻	
Nb, Si			H,0/0.4% F ⁻	

Units of Measurement

Common Unit Prefixes								
Prefix	kilo	centi	milli	micro	nano	pico	femto	atto
Symbol	k	с	m	μ	n	р	f	а
Factor	10 ³	10-2	10 ⁻³	10 ⁻⁶	10 ⁻⁹	10 ⁻¹²	10-15	10 ⁻¹⁸
Equivalence	thousand	hundredth	thousandth	millionth	billionth	trillionth	quadrillionth	quintillionth

Weight to Weight Concentrations					
Name	Symbol	ool Equivalence			
Parts per thousand *	ppt*	g/kg	mg/g	µg/mg	ng/µg
Parts per million	ppm	mg/kg	µg/g	ng/mg	pg/µg
Parts per billion	ppb	µg/kg	ng/g	pg/mg	fg/µg
Parts per trillion **	ppt**	ng/kg	pg/g	fg/mg	ag/µg


Concentration Conversions					
Unit	Symbol	ppt*	ррт	ppb	ppt**
1 part per thousand *	ppt*	-	1 x 10 ³	1 x 10 ⁶	1 x 10 ⁹
1 part per million	ppm	1 x 10 ⁻³	-	1 x 10 ³	1 x 10 ⁶
1 part per billion	ppb	1 x 10 ⁻⁶	1 x 10 ⁻³	-	1 x 10 ³
1 part per trillion **	ppt**	1 x 10 ⁻⁹	1 x 10⁻⁵	1 x 10 ⁻³	-

* ppt = parts per thousand ** ppt = parts per trillion

Weight to Volume Concentrations					
Name	Symbol	ol Equivalence			
Parts per thousand *	ppt*	g/L	mg/mL	μg/μL	ng/nL
Parts per million	ppm	mg/L	µg/mL	ng/μL	pg/nL
Parts per billion	ppb	μg/L	ng/mL	pg/µL	fg/nL
Parts per trillion **	ppt**	ng/L	pg/mL	fg/µL	ag/nL

Temperature Scale					
Scale	Symbol	Convert To	Formula		
Celsius	°C	Fahrenheit	°F = °C x 1.8 + 32		
Celsius	°C	Kelvin	°K = °C + 273		
Fahrenheit	°F	Celsius	°C = (°F - 32) / 1.8		
Fahrenheit	°F	Kelvin	°K = (°F - 32) / 1.8 + 273		
Kelvin	°K	Celsius	°C = °K - 273		
Kelvin	°K	Fahrenheit	°F = 1.8 (°K - 273) + 32		

Helpful Hint: When calculating gravimetric factors for lon Chromatography standards, remember that:

Anion Concentration
1,000 μg/mL Nitrate
1,000 µg/mL Nitrite
1,000 µg/mL Phosphate
1,000 µg/mL Sulfate
1,000 µg/mL Nitrogen as Nitrate
1,000 µg/mL Nitrogen as Nitrite
1,000 µg/mL Phosphorus as Phosphate
1,000 μg/mL Sulfur as Sulfate

Elemental Concentration

- 226 µg/mL Nitrogen
- 305 µg/mL Nitrogen
- 326 µg/mL Phosphorus
- 334 µg/mL Sulfur

=

=

=

=

=

=

=

=

- 1,000 µg/mL Nitrogen
- 1,000 µg/mL Nitrogen
- 1,000 µg/mL Phosphorus
- 1,000 µg/mL Sulfur

Speciation analysis has become common in many fields, including environmental, food and pharmaceutical testing labs. To analyze species within a sample requires Certified Reference Materials (CRMs) for sample verification and method validation. Many speciation standards are available in today's market, however, most of them are not certified or analyzed with a state-of-the-art ICP, ICP-MS or LC-ICP-MS. Spex CertiPrep offers a wide variety of speciation standards, certified to the strictest ISO 17034 guidelines, and tested on our own LC-ICP-MS.

Elements	Concentration	Volume	Matrix	Part #
Arsenic +3	1,000 μg/mL	30 mL	2% HCI	SPEC-AS3M
Arsenic +3	1,000 μg/mL	125 mL	2% HCI	SPEC-AS3
Arsenic +5	1,000 μg/mL	30 mL	H ₂ O	SPEC-AS5M
Arsenic +5	1,000 μg/mL	125 mL	H ₂ O	SPEC-AS5
Chromium +3	1,000 μg/mL	30 mL	2% HNO ₃	SPEC-CR3M
Chromium +3	1,000 μg/mL	125 mL	2% HNO ₃	SPEC-CR3
Chromium +6	1,000 μg/mL	30 mL	H ₂ O	SPEC-CR6M
Chromium +6	1,000 μg/mL	125 mL	H ₂ O	SPEC-CR6
Selenium +4	1,000 μg/mL	30 mL	2% HNO ₃	SPEC-SE4M
Selenium +4	1,000 μg/mL	125 mL	2% HNO ₃	SPEC-SE4
Selenium +6	1,000 μg/mL	30 mL	H ₂ O	SPEC-SE6M
Selenium +6	1,000 μg/mL	125 mL	H ₂ O	SPEC-SE6

Catalog Number:SPEC-AS3Description:Arsenic +3 Speciation StandardMatrix:2% HCl

Lot No. CL5-199MKBY

The Certified Reference Material, CRM, is intended primarily for use as a quality control standard for inorganic spectroscopic instrumentation such as LC-ICP-MS. It can be employed in validating analytical methods for the determination of relevant species.

	Certified Value [As (total)]:	$20.2\pm0.4~\mu\text{g/mL}$
--	-------------------------------	-----------------------------

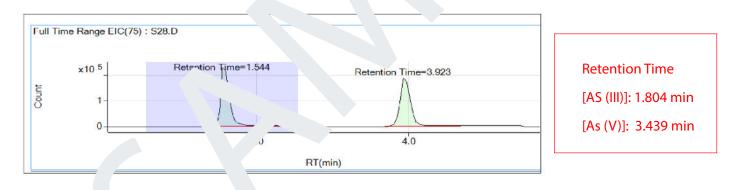
Certified Value is Traceable to:

* - Indicates NIST SRM

3103a*

† - Indicates Spex CertiPrep CRM (when NIST SRM is not available)

The CRM is prepared gravimetrically using high purity Arsenic (III) Oxide (As2O3), Lot #08831RAS and Arsenic (V) Oxide (As2Os), Lot #10111D. The certified value for overall Arsenic is obtained by ICP measurement. The value is As (III) and As (V) in this speciation standard is obtained by LC-ICP-MS.


Refer to side 2 for details of measurement quantities.

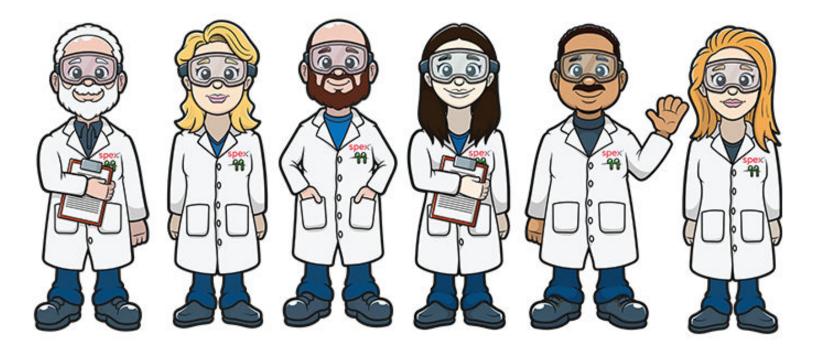
Uncertified Properties:

Instrumental Analysis by LC-ICP-MS Spectrometer:

Density: 0.998 g/mL @ 20 °C

[AS (III)]: $10.3 \pm 0.5 \ \mu\text{g/mL}$ [As (V)]: $10.4 \pm 0.5 \ \mu\text{g/mL}$

Note: The above chromatogram was obtained by analyzing a diluted standard at a concentration of 25 µg/L of each species. An injection volume of 25 µL was used. The final result of each species was determined against a calibration curve of each individual species using peak area.



From Your Bench to Our Bench Bench Talk!

Have a question? Ask a Chemist!

Do you have a technical CRM question for our experienced chemists? We have a dedicated technical support team to answer your CRM and lab questions.

Simply e-mail us at **AskAChemist@antylia.com** and we will be happy to help you. To view previously asked questions, visit **spex.com/knowledge-base/ask-a-chemist**.

- Made with acid and ASTM Type I Water
- Inorganic compounds and metals at 99.99& to 99.9999% purity (where commercially available)
- Directly traceable to NIST (where applicable)
- Certified by DQS to ISO 9001:2015
- Accredited by A2LA to ISO/IEC 17025:2017 and ISO 17034:2016

Claritas PPT[®] Grade CRMs are designed for ICP and ICP-MS analysis. They are available in single and multi-element solutions. The standards are at 1 µg/mL, 10 µg/mL, 100 µg/mL, or 1,000 µg/mL and packaged in 30 mL and 125 mL bottles to minimize contamination. They are made using ultra high purity acids, the highest grade starting materials and high purity water in order to minimize contaminants. Custom standards can be manufactured upon request.

Designed For Use With	ICP ICP-MS
Analytical Range For Use	ppb, ppt
Single-Element Standards	\checkmark
1 μg/mL	\checkmark
10 μg/mL	\checkmark
100 μg/mL	\checkmark
1,000 μg/mL	\checkmark
Multi-Element Standards	\checkmark
Custom Standards	\checkmark
Certifications	
ISO 9001:2015	\checkmark
ISO/IEC 17025:2017	\checkmark
ISO 17034:2016	\checkmark
Quality	
Traceable to NIST SRM (where applicable)	\checkmark
Acid Grade	Ultra High Purity Grade
# Trace Impurities Measured on Certificate of Analysis	68
Trace Impurities Measured to	μg/L
Volume	
30 mL	\checkmark
125 mL	

Aluminum		Atomic Number Atomic Mass Density Melting Point Boiling Point	13 26.982 2.7 g/cm³ 660 ℃ 2467 ℃
Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	2% HNO ₃	CLAL2-1BY
1,000 µg/mL	30 mL	2% HNO ₃	CLAL2-2M
1,000 μg/mL 125 mL		2% HNO ₃	CLAL2-2Y

	Atomic Number	33
AS	Atomic Mass	74.922
	Density	5.727 g/cm ³
Arsenic	Melting Point	817 °C
	Boiling Point	614 °C*

Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	2% HNO ₃	CLAS2-1BY
1,000 μg/mL	30 mL	2% HNO ₃	CLAS2-2M
1,000 µg/mL	125 mL	2% HNO ₃	CLAS2-2Y

* Sublimation Point.

CLBE2-2M

CLBE2-2Y

B	9	Atomic Number Atomic Mass	4 9.012
Beryllium		Density Melting Point Boiling Point	1.848 g/cm³ 1287 ℃ 2471 ℃
Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	2% HNO ₃	CLBE2-1BY

2% HNO,

2% HNO,

30 mL

125 mL

Antimo	Ony		Atomic Number Atomic Mass Density Melting Point Boiling Point	6.6 63	1.760 97 g/cm³ 0 ℃ 87 ℃
Concentration	Volume		Matrix		Part #
1,000 μg/mL	30 mL	H ₂ O)/0.6% Tartaric Acid/tr.	HNO ₃	CLSB7-2M
1,000 μg/mL	125 mL	H ₂ O)/0.6% Tartaric Acid/tr.	HNO ₃	CLSB7-2Y

Bariu		Atomic Number Atomic Mass Density Melting Point Boiling Point	56 137.327 3.51 g/cm³ 727 ℃ 1897 ℃
Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	CLBA2-2M
1,000 μg/mL	125 mL	2% HNO ₃	CLBA2-2Y

Bismu	th	Atomic Number Atomic Mass Density Melting Point Boiling Point	83 208.980 9.78 g/cm³ 271 ℃ 1564 ℃
Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	2% HNO ₃	CLBI2-1BY
10 μg/mL	30 mL	2% HNO ₃	CLBI2-1AM
10 μg/mL	125 mL	2% HNO ₃	CLBI2-1AY

1,000 µg/mL

1,000 µg/mL

Boro	n	Atomic Number Atomic Mass Density Melting Point Boiling Point	5 10.811 2.46 g/cm³ 2075 ℃ 4000 ℃
Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	H ₂ O	CLB9-1BY

Cd Cadmium		Atomic Number Atomic Mass Density Melting Point Boiling Point	48 112.411 8.65 g/cm³ 321 ℃ 767 ℃
Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	CLCD2-2M
1,000 μg/mL	125 mL	2% HNO ₃	CLCD2-2Y

Concentration	volume	Matrix	Part #
Concentration	Volume	Matrix	Part #
		Boiling Point	2671 °C
Chromi	Chromium		1907 °C
			7.14 g/cm ³
Cr		Atomic Mass	51.996
		Atomic Number	24

Concentration	volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	CLCR2-2M
1,000 μg/mL	125 mL	2% HNO ₃	CLCR2-2Y

Copp	er	Atomic Number Atomic Mass Density Melting Point Boiling Point	29 63.546 8.92 g/cm³ 1084 ℃ 2562 ℃
Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	CLCU2-2M
1,000 μg/mL	125 mL	2% HNO ₃	CLCU2-2Y

Galliu		Atomic Number Atomic Mass Density Melting Point Boiling Point	31 69.723 5.904 g/cm ³ 30 ℃ 2204 ℃
Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	2% HNO ₃	CLGA2-1BY

		Atomic Number	20
		Atomic Mass	40.078
Calcium		Density	1.55 g/cm ³
		Melting Point	842 °C
		Boiling Point	1484 °C
Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	CLCA2-2M

2% HNO₃

125 mL

CLCA2-2Y

Coba) It	Atomic Number Atomic Mass Density Melting Point Boiling Point	27 58.933 8.9 g/cm³ 1495 ℃ 2927 ℃
Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	CLCO2-2M
1,000 µg/mL	125 mL	2% HNO ₃	CLCO2-2Y

Gadolin	ium	Atomic Number Atomic Mass Density Melting Point Boiling Point	64 157.25 7.9 g/cm³ 1312 ℃ 3266 ℃
Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	2% HNO ₃	CLGD2-1BY

1,000 µg/mL

German		Atomic Number Atomic Mass Density Melting Point Boiling Point	32 72.63 5.323 g/cm³ 938 ℃ 2833 ℃
Concentration	Volume	Matrix	Part #
10 µg/mL	30 mL	H ₂ O/tr. F ⁻	CLGE9-1AM
10 µg/mL	125 mL	H₂O/tr. F ⁻	CLGE9-1AY

Gold	U a	Atomic Number Atomic Mass Density Melting Point Boiling Point	79 196.967 19.3 g/cm³ 1064 °C 2970 °C
Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	1% HNO ₃ /3% HCI	CLAU6-1BY
100 μg/mL	30 mL	2% HCI	CLAU1-1M
100 µg/mL	125 mL	2% HCI	CLAU1-1Y

Iridiu	∎ m	Atomic Number Atomic Mass Density Melting Point Boiling Point	77 192.217 22.56 g/cm³ 2446 ℃ 4428 ℃
Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	2% HCI	CLIR1-1BY

P		Atomic Number Atomic Mass Density Melting Point Boiling Point	82 207.2 11.34 g/cm³ 327 ℃ 1749 ℃
Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	2% HNO ₃	CLPB2-1BY

2% HNO,

2% HNO₃

30 mL

125 mL

Lutetiu	Jum	Atomic Number Atomic Mass Density Melting Point Boiling Point	71 174.967 9.841 g/cm³ 1663 ℃ 3402 ℃
Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	2% HNO ₃	CLLU2-1BY

Indium	Atomic Number	49
	Atomic Mass	114.818
	Density	7.31 g/cm ³
	Melting Point	157 °C
	Boiling Point	2072 °C

Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	2% HNO ₃	CLIN2-1BY
10 µg/mL	30 mL	2% HNO ₃	CLIN2-1AM
10 µg/mL	125 mL	2% HNO ₃	CLIN2-1AY

	Atomic Number 26	
	Atomic Mass 55.845	
	Density 7.874 g/c	cm ³
Iron	Melting Point 1538 °C	
	Boiling Point 2861 °C	

Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	2% HNO ₃	CLFE2-1BY
1,000 μg/mL	30 mL	2% HNO ₃	CLFE2-2M
1,000 µg/mL	125 mL	2% HNO ₃	CLFE2-2Y

Concentration	Volume	Matrix 2% HNO	Part #
		Boiling Point	1342 °C
Lithiu	Lithium		181 °C
			0.535 g/cm ³
		Atomic Mass	6.941
		Atomic Number	3

1,000 µg/mL

1,000 µg/mL

CLPB2-2M

CLPB2-2Y

Magnes	g ium	Atomic Number Atomic Mass Density Melting Point Boiling Point	12 24.305 1.738 g/cm³ 650 ℃ 1090 ℃
Concentration	Volume	Matrix	Part #
1,000 µg/mL	30 mL	2% HNO ₃	CLMG2-2M
1,000 μg/mL	125 mL	2% HNO ₃	CLMG2-2Y

M angar		Atomic Number Atomic Mass Density Melting Point Boiling Point	25 54.938 7.47 g/cm³ 1247 ℃ 2061 ℃
Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	2% HNO ₃	CLMN2-1BY
1,000 μg/mL	30 mL	2% HNO ₃	CLMN2-2M
1,000 μg/mL	125 mL	2% HNO ₃	CLMN2-2Y

	Atomic Number	80
	Atomic Mass	200.59
	Density	13.534 g/cm ³
Mercury	Melting Point	-39 °C
	Boiling Point	356 °C

Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	0.7% HNO ₃ /0.4% HCl	CLHG6-1BY
10 µg/mL	30 mL	5% HNO ₃	CLHG2-1AM
10 µg/mL	125 mL	5% HNO ₃	CLHG2-1AY
1,000 µg/mL	30 mL	10% HNO ₃	CLHG4-2M
1,000 μg/mL	125 mL	10% HNO ₃	CLHG4-2Y

Nd Neodymium		Atomic Number Atomic Mass Density Melting Point	60 144.242 7.01 g/cm³ 1024 ℃
пеодуп	num	Boiling Point	3074 °C
Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	2% HNO ₃	CLND2-1BY

Phosph	orus	Atomic Number Atomic Mass Density Melting Point Boiling Point	15 30.974 1.823 g/cm³ 44 ℃ 277 ℃
Concentration	Volume	Matrix	Part #
1 µg/mL	125 mL	H ₂ O	CLP9-1BY

Concentration Values	Matrix	Dout #
	Boiling Point	4639 °C
Molybdenum	Melting Point	2623 ℃
	Density	10.28 g/cm ³
	Atomic Mass	95.96
	Atomic Number	42

Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	H ₂ O	CLMO9-1BY
1,000 µg/mL	30 mL	H ₂ O	CLMO9-2M
1,000 µg/mL	125 mL	H ₂ O	CLMO9-2Y

Nicke		Atomic Number Atomic Mass Density Melting Point Boiling Point	28 58.693 8.908 g/cm³ 1455 ℃ 2913 ℃
Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	2% HNO ₃	CLNI2-1BY
1,000 µg/mL	30 mL	2% HNO ₃	CLNI2-2M
1,000 μg/mL	125 mL	2% HNO ₃	CLNI2-2Y
Platinu		Atomic Number Atomic Mass Density Melting Point Boiling Point	78 195.064 21.09 g/cm³ 1768 ℃ 3825 ℃
Concentration	Volume	Matrix	Part #

2% HCl

CLPT1-1BY

www.cientisol.com · info@cientisol.com · 981 936 338 Phone: +1.732.549.7144 • +1.800.LAB.SPEX

1 µg/mL

125 mL

Potassi	um	Atomic Number Atomic Mass Density Melting Point Boiling Point	19 39.098 0.856 g/cm³ 63 ℃ 759 ℃
Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	CLK2-2M
1,000 μg/mL	125 mL	2% HNO ₃	CLK2-2Y

	Atomic Number	21
	Atomic Mass	44.956
	Density	2.985 g/cm ³
Scandium	Melting Point	1541 °C
	Boiling Point	2836 °C

Concentration	Volume	Matrix	Part #
10 μg/mL	30 mL	2% HNO ₃	CLSC2-1AM
10 μg/mL	125 mL	2% HNO ₃	CLSC2-1AY

	Atomic Number	14
	Atomic Mass	28.085
	Density	2.33 g/cm ³
Silicon	Melting Point	1414 °C
	Boiling Point	3265 °C

Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	H₂O/tr. F⁻	CLSI9-1BY

Na	a	Atomic Number Atomic Mass	11 22.989
Sodium		Density Melting Point Boiling Point	0.968 g/cm³ 98 ℃ 883 ℃
Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	CLNA2-2M
1,000 μg/mL	125 mL	2% HNO ₃	CLNA2-2Y

Rhodiu	n um	Atomic Number Atomic Mass Density Melting Point Boiling Point	45 102.905 12.45 g/cm³ 1964 ℃ 3695 ℃
Concentration	Volume	Matrix	Part #
10 µg/mL	30 mL	2% HCl	CLRH1-1AM
10 μg/mL	125 mL	2% HCI	CLRH1-1AY

	Atomic Number	34
	Atomic Mass	78.96
	Density	4.819 g/cm ³
Selenium	Melting Point	221 °C
	Boiling Point	685 °C

Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	CLSE2-2M
1,000 μg/mL	125 mL	2% HNO ₃	CLSE2-2Y

Concentration Volume	Matrix	Dart #
	Boiling Point	2162 °C
Silver	Melting Point	962 °C
	Density	10.49 g/cm ³
	Atomic Mass	107.868
	Atomic Number	47
_		

Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	CLAG2-2M
1,000 μg/mL	125 mL	2% HNO ₃	CLAG2-2Y

Stronti	um	Atomic Number Atomic Mass Density Melting Point Boiling Point	38 87.62 2.63 g/cm³ 777 ℃ 1382 ℃
Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	2% HNO ₃	CLSR2-1BY

CLTL2-2Y

Terbiu) Im	Atomic Number Atomic Mass Density Melting Point Boiling Point	65 158.925 8.219 g/cm³ 1356 ℃ 3230 ℃
Concentration	Volume	Matrix	Part #
10 µg/mL	30 mL	2% HNO ₃	CLTB2-1AM
10 µg/mL	125 mL	2% HNO ₃	CLTB2-1AY

Th	Atomic Number Atomic Mass	90 232.038
Thorium	Density	11.724 g/cm ³
	Melting Point	1842 °C
(Depleted)	Boiling Point	4788 °C

Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	2% HNO ₃	CLTH2-1BY
1,000 µg/mL	30 mL	2% HNO ₃	CLTH2-2M
1,000 µg/mL	125 mL	2% HNO ₃	CLTH2-2Y

		Atomic Number	22
		Atomic Mass	47.857
		Density	4.507 g/cm ³
Titaniı	um	Melting Point	1668 °C
		Boiling Point	3287 °C
Concentration	Volume	Matrix	Part #
Concentration	volume	Matrix	Fall #
1.000 µg/mL	30 mL	H.O/0.24% F ⁻	CITI9-2M

		<u>1</u>	
oncentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	H ₂ O/0.24% F ⁻	CLTI9-2M
1,000 μg/mL	125 mL	H ₂ O/0.24% F ⁻	CLTI9-2Y

Uranium (Depleted)		Atomic Number Atomic Mass Density Melting Point Boiling Point	92 238.027 19.05 g/cm³ 1132 ℃ 4131 ℃
Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	2% HNO ₃	CLU2-1BY
1,000 μg/mL	30 mL	2% HNO ₃	CLU2-2M
1,000 μg/mL	125 mL	2% HNO ₃	CLU2-2Y

		Atomic Number	81
		Atomic Mass	204.383
Thallium		Density	11.85 g/cm ³
		Melting Point	304 °C
		Boiling Point	1473 °C
Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	CLTL2-2M

2% HNO₃

a		
Tin	Boiling Point	2602 °C
	Melting Point	232 °C
	Density	7.31 g/cm ³
	Atomic Mass	118.71
	Atomic Number	50

125 mL

1,000 μg/mL

Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	1% HNO ₃ /1% HF	CLSN2-2M
1,000 μg/mL	125 mL	1% HNO ₃ /1% HF	CLSN2-2Y

Tungst	cen	Atomic Number Atomic Mass Density Melting Point Boiling Point	74 183.84 19.25 g/cm³ 3422 ℃ 5555 ℃
Concentration	Volume	Matrix	Part #
1 μg/mL	125 mL	2% HNO ₃ /tr. HF	CLW2-1BY

Vanadi	um	Atomic Number Atomic Mass Density Melting Point Boiling Point	23 50.941 6.11 g/cm³ 1910 ℃ 3407 ℃
Concentration	Volume	Matrix	Part #
1,000 μg/mL	30 mL	2% HNO ₃	CLV2-2M
1,000 μg/mL	125 mL	2% HNO ₃	CLV2-2Y

1 μg/mL

Single-Element Standards for ICP-MS

	Yttrium		Atomic Number Atomic Mass Density	39 88.906 4.472 g/cm³
			Melting Point Boiling Point	1526 ℃ 3336 ℃
	Concentration	Volume	Matrix	Part #
	1 μg/mL	125 mL	2% HNO ₃	CLY2-1BY
	10 μg/mL 30 mL		2% HNO ₃	CLY2-1AM
	10 μg/mL	125 mL	2% HNO ₃	CLY2-1AY

Zinc	1	Atomic Number Atomic Mass Density Melting Point Boiling Point	30 65.38 7.14 g/cm³ 419 ℃ 907 ℃
Concentration	Volume	Matrix	Part #
1 µg/mL	125 mL	2% HNO ₃	CLZN2-1BY
1,000 μg/mL 30 mL		2% HNO ₃	CLZN2-2M
1,000 µg/mL 125 mL		2% HNO ₃	CLZN2-2Y

Zr Zirconium	Atomic Number Atomic Mass Density Melting Point Boiling Point	40 91.224 6.511 g/cm³ 1855 ℃ 4409 ℃
Concentration Volume	Matrix	Part #

2% HNO,

CLZR2-1BY

125 mL

Matrix Blanks & Isotopes for ICP-MS

Description	Volume	Matrix	Part #
Hydrochloric Acid Blank	125 mL	2% HCl	CLBLK-HCL
Nitric Acid Blank	30 mL	2% HNO ₃	CLBLK-HNO3M
Nitric Acid Blank	125 mL	2% HNO ₃	CLBLK-HNO3
Nitric Acid Blank	250 mL	2% HNO ₃	CLBK-HNO3-250
DI Water Blank	125 mL	H₂O	CLBLK-H2O
DI Water Blank	250 mL	H ₂ O	CLBK-H2O-250

	_			
Elements	Concentration	Volume	Matrix	Part #
Boron 10	10 μg/mL	125 mL	H₂O	ISOT-B10
Boron 11	10 μg/mL	125 mL	H ₂ O	ISOT-B11
Copper 65	10 μg/mL	125 mL	2% HNO₃	ISOT-CU65
Lead 206	10 μg/mL	125 mL	2% HNO ₃	ISOT-PB206
Lead 207	10 μg/mL	125 mL	2% HNO₃	ISOT-PB207
Lithium 6	100 μg/mL	30 mL	2% HNO₃	ISOT-LI6M
Lithium 6	100 μg/mL	125 mL	2% HNO ₃	ISOT-LI6
Strontium 86	10 μg/mL	125 mL	2% HNO ₃	ISOT-SR86
Zinc 68	10 µg/mL	125 mL	2% HNO ₃	ISOT-ZN68

"Famed chemist Glenn Seaborg was the only person who could write his address in chemical elements. He would write Sg, Lr, Bk, Cf, Am. That's Seaborgium (Sg), named after Seaborg himself; Lawrencium (Lr), named after the Lawrence Berkeley National Laboratory; Berkelium (Bk), named after the city of Berkeley, the home of UC Berkeley; Californium (Cf), named after the state of California; Americium (Am), named after America."

- Made with acid and ASTM Type I Water
- Inorganic compounds and metals at 99.99% to 99.9999% purity (where commercially available)
- Directly traceable to NIST (where applicable)
- Certified by DQS to ISO 9001:2015
- Accredited by A2LA to ISO/IEC 17025:2017 and ISO 17034:2016

Claritas PPT[®] Grade CRMs are designed for ICP and ICP-MS analysis. They are available in single and multi-element solutions. The standards are at 1 µg/mL, 10 µg/mL, 100 µg/mL, or 1,000 µg/mL and packaged in 30 mL and 125 mL bottles to minimize contamination. They are made using ultra high purity acids, the highest grade starting materials and high purity water in order to minimize contaminants. Custom standards can be manufactured upon request.

Assurance[®] Grade CRMs are designed for AA and ICP and are available in single and multi-element formulations. 70 elements are available as single-element standards and are available at 1,000 µg/mL and/or 10,000 µg/mL. They are packaged in 30 mL, 125 mL, 250 mL, and 500 mL bottles to minimize contamination. Custom standards can be manufactured upon request.

	Claritas PPT [®] Grade CRMs	Assurance [®] Grade CRMs
Designed For Use With	ICP ICP-MS	AA ICP
Analytical Range For Use	ppb, ppt	ppm, ppb
Single-Element Standards	\checkmark	
1 μg/mL	\checkmark	
10 μg/mL	\checkmark	
100 μg/mL	\checkmark	
1,000 μg/mL	\checkmark	
10,000 μg/mL		
Multi-Element Standards	\checkmark	
Custom Standards	√	
ISO 9001:2015	√	√
ISO/IEC 17025:2017		
ISO 17034:2016	√	
Traceable to NIST SRM (where applicable)	√	√
Acid Grade	Ultra High Purity Grade	High Purity Grade
# Trace Impurities Measured on Certificate of Analysis	68	68
Trace Impurities Measured to	μg/L	μg/mL
30 mL	√	√
125 mL		
250 mL		
500 mL		

SPEXperience^m

Creating An Awesome Customer Experience

It's not only what we do, it's how we do it. We have been manufacturing Inorganic and Organic Certified Reference Materials and Calibration Standards for the Analytical Spectroscopy and Chromatography communities since 1954. Our passion for science and dedication to the analytical community drives us to go above and beyond for you. We want to provide you with the customer experience you deserve and can rely on. We do this by making sure you are our priority in everything we do.

CIENTISOL, S.L.U.

The section that follows contains multi-element standards with a combination of elements, concentrations and matrices, designed by Spex CertiPrep for convenience of use and stability.

Standards may be diluted in the same matrix as specified; however, caution must be exercised in the choice of the source for your diluents. Diluting the matrix may cause some standards to precipitate. Also, an impure or unknown diluent turns your standard into an unknown. We recommend using only Spex CertiPrep Matrix Blanks when diluting your standards.

- Mixed Multi-Element Calibration Standards
- Calibration and Matrix Blanks
- Instrument Check (Lab Performance) Standards
- Quality Control Standards
- Lab Fortifying Stock (LFS) Solution
- Laboratory Performance Check (LPC) Standards
- Interference Check Standards
- Environmental EPA Set
- Toxicity Characteristic Leachate Procedure (TCLP) Standard
- Drinking Water Pollutant Standards
- Groundwater and Wastewater Pollution Control Check Standards

CALIBRATE WITH CONFIDENCE®

Spex CertiPrep continues to supply the most comprehensive certificate of analysis in the industry. For example, our SPEXertificate shows actual reported values for ICP of the final solution - not reported values of the starting materials or by a calculation. It also reports the trace impurities of the final solution - not of the starting materials.

In addition, each elemental impurity is listed with actual value - not limited to the element above detection limits. We also scan 68 elements with found values for all of our products which are traceable to NIST. Many other companies have followed, but not one gives you the information you get from us!

Spex CertiPrep is accredited by A2LA for Inorganic and Organic Certified Reference Materials. In addition, to being registered as an ISO 9001:2015 facility, Spex CertiPrep is accredited by A2LA as complying with the requirements of ISO/IEC 17025:2017 and ISO 17034:2016. Our scope of accreditation is the most comprehensive in the industry.

The following Calibration Standards are provided for routine instrument calibration. The concentrations and matrices have been selected for convenience of use and stability.

For use in US EPA Method 200.7 (Revision 4.4) and SW-846, Method 6010 (Third Edition).

Elements		Concer	ntration		Matrix	
Ag		5 μς	j/mL	5% HNO₃/tr. Tartaric Acid/tr. HF		
Ba		10 µ	g/mL			
B, Cd, Cu, Mn Sb, Se As, Ca		20 µ	g/mL			
		50 μg/mL 100 μg/mL				
Volume Part #		Volume		Part #		
125 mL	N	NIXSTD1A-100	500 mL		MIXSTD1A-500	

Elements	Concer	tration		Matrix		
Ag		5 μg/mL				
В, Ва		10 µ	g/mL		5% HNO₃/tr. Tartaric Acid/tr. HF	
Cd, Cu, Mn		20 µ	g/mL	5		
Sb, Se		50 μg/mL				
As, Ca		100 _F	ıg/mL			
Volume		Part #	Volume	e	Part #	
125 mL	N	IIXSTD1C-100	500 mL		MIXSTD1C-500	

Elements		Concentration			Matrix	
Sr		10 μg/mL		5% HNO3		
Li		50 μg/mL				
Mo, Na	Mo, Na		100 μg/mL		570 HNO3	
К		200 µg/mL				
Volume	Part #		Volume		Part #	
125 mL	М	IXSTD2A-100	500 mL		MIXSTD2A-500	

Elements		Concentration				Matrix
Ce, Co, V		20 µg/mL		5% HNO ₃		
Р		100 μg/mL				
Volume	Volume		Part # Volum			Part #
125 mL	M	IIXSTD3A-100		500 mL		MIXSTD3A-500

Elements		Concentration				Matrix
Sn		40 µg/mL			5% HNO₃/tr. HF	
Cr, Zn		50 μg/mL				
Al, Hg*, SiO ₂ , Ti		100 μg/mL				
Volume	Part #		ſ	Volume		Part #
125 mL	N	IXSTD4A-100		500 mL		MIXSTD4A-500

* Mercury is supplied as a separate solution (PLGH2-1AY/X) due to incompatibility with other elements.

Elements		Concentration				Matrix
Sn		40 μg/mL		5% HNO₃/tr. HF		
Cr, Zn		50 μg/mL				
Al, SiO ₂ , Ti		100 μg/mL				
Volume		Part #		Volume		Part #
125 mL	M	MXSTD4A-100N		500 mL		MXSTD4A-500N

Elements Conce			oncentration			Matrix	
Ве		10	μg/	g/mL		5% HNO3	
Ni		20	μg/	g/mL			
TI		50	μg/	ıg/mL			
Fe, Mg, Pb		100	00 μg/mL				
				Malanna a		Dout #	
Volume		Part #		Volume		Part #	
125 mL	М	IIXSTD5A-100		500 mL		MIXSTD5A-500	

Set Contains	Part #	
MIXSTD1A-100		
MIXSTD2A-100		
MIXSTD3A-100	MIXSTD-SETA	
MIXSTD4A-100	MIXSID-SETA	
MIXSTD5A-100		
PLHG2-1Y		

Set Contains	Part #
MIXSTD1A-100	
MIXSTD2A-100	
MIXSTD3A-100	MXSTD-SETAN
MXSTD4A-100N	
MIXSTD5A-100	

* Mercury is supplied as a separate solution (PLGH2-1X/Y) due to incompatibility with other elements.

Set Co	Part #	
MIXSTD1-100	MIXSTD4-100	
MIXSTD2-100	MIXSTD5-100	MIXSTD-SET
MIXSTD3-100		

Г

Elements	Elements			ration		Matrix	
Ве		50 µ	ıg∕ı	g/mL			
Mn		100 լ	μg/	g/mL			
Cd, Zn	150 μg/mL			2% HNO ₃			
Se	Se		200 μg/mL				
Pb		500 j	µg/mL				
Volume		Part #	Part #			Part #	
125 mL	Ν	AIXSTD1-100		500 mL		MIXSTD1-500	

Elements		Conce	Concentration			Matrix	
Ba, Co, Cu, V	100		μg,	ig/mL		5% HNO3	
Fe	Fe		10,000 μg/mL			570111003	
Volume		Part #		Volume		Part #	
125 mL	1	/IXSTD2-100		500 mL		MIXSTD2-500	

Elements		Concentration			Matrix	
Mo, Si		100 µg	µg/mL		2% HNO₃/tr. HF	
As	As 500		μg/mL		270 HINO3/ U. HF	
Volume	Part #		Volume		Part #	
125 mL	MIXSTD3-100		500 mL		MIXSTD3-500	

Elements		Concen	tration		Matrix	
Cr, Ni		20 μς	J/mL			
Al, Na		200 µ	g/mL		5% HNO3	
К		400 µ	g/mL		570111003	
Ca		1,000 µ	ug/mL			
Volume		Part #	Volume		Part #	
125 mL	MI	XSTD4-100	500 mL		MIXSTD4-500	

Elements		Concentration				Matrix	
Ag		50 μ		g/mL			
В		100 µ	g/mL		50	5% HNO₃/tr. Tartaric Acid/tr. HF	
Sb, Tl		200 µ	.00 μg/mL		5%		
Mg		1,000	μg/mL				
Volume		Part #	Volume			Part #	
125 mL	M	IIXSTD5-100		500 mL		MIXSTD5-500	

Used to calibrate and verify wavelength accuracy and stability in sequential and simultaneous ICP units. Each CAL-MIX is designed to give the user wavelength ranges from 160 nm to 790 nm. Every ICP manufacturer has a specific group of elements at varying concentrations to determine instrument accuracy and reliability. Some have special calibration programs incorporated into their software; others give you information in their manuals. These standards are also useful as training tools for technicians or for methods development. Check your ICP manual or service guide for more information.

Elements Concent		ntr	ration		Matrix		
As, La, Li, Mn, Mo, Na, Ni, So	2	20 µ		g/mL		5% HCl	
K, P, S	K, P, S		100 μg/mL			570 ACI	
Volume		Part #	ſ	Volume		Part #	
125 mL	C	ALMIX3-100		500 mL		CALMIX3-500	

Elements		Concentration				Matrix		
Ва		1 μς	g/n	nL				
Al, As, Cu, Mn, Na, Ni, P, Pb, Sc,	Al, As, Cu, Mn, Na, Ni, P, Pb, Sc, Zn 10 µ		g/ı	g/mL		2% HNO ₃		
К		50 µ		mL				
Volume		Part #		Volume		Part #		
125 mL	(ALMIX4-100		500 mL		CALMIX4-500		

Elements		Concentration				Matrix		
Al, As, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na	a, Ni, Pb, Zn	li, Pb, Zn 100		µg/mL		2% HNO3		
Y	Y 600		μg	ıg/mL				
Volume		Part #		Volume		Part #		
125 mL	(ALMIX7-100		500 mL		CALMIX7-500		

Elements	Con	centration	Matrix	
Al, As, Co, Cr, Cu, K, Na, P, P	b 50	0 μg/mL	2% HNO ₃	
Volume	Part #	Volume	e Part #	
125 mL	CALMIX8-100	500 mL	CALMIX8-500	

Elements Concer		entration			Matrix	
Al, Ba, Cd, Cu, Mn, Zn	5	50 μg/mL		2% HNO ₃		
К	50	500 μg/mL			270 HNO3	
Volume	Part #		Volume		Part #	
125 mL	CALMIX10-100	CALMIX10-100 500 mL			CALMIX10-500	

Quality Control Standards are used to check the standard curve, the procedure for inter-element correction and other spectral interferences. These standards are carried through the entire analytical operation of the method. If the determined concentration is not within \pm 5% of 1 µg/mL, the laboratory performance is unacceptable. The source of the problem should be identified and corrected before continuing the analysis.

Elements Concer		ntr	ration		Matrix	
Si		50 μg		50 μg/mL		
Ag, Al, B, Ba, Na		100 µ		/mL	5% HNO₃/tr. F⁻	
К		1,000 µg/mL				
Volume		Part #	ſ	Volume		Part #
125 mL		QC-7 500 mL			QC-7-500	

Elements	Concer	ntration	Matrix
Ag	50 μ	g/mL	
Al, B, Ba, Na	100 µ	ıg/mL	5% HNO₃/tr. HF
Si	500 µ	ıg/mL	5% HNO3/ (I. HP
К	1,000	μg/mL	
Volume	Part #	Volume	Part #
125 mL	QC-7A	500 mL	QC-7A-500

Elements Concentration			ntration	Mat	rix	
	Fe, Li, Mg, Mn, Mo, Ni, Pb, Sb, Ti, Tl, V, Zn	n, Mo, Ni, Pb, Sb, 100 µg/mL		5% HNO₃/tr. Tartaric Acid/tr. HF		
Volume	Part #	Volume	Part #	Volume	Part #	
125 mL	QC-21	250 mL	QC-21-250	500 mL	QC-21-500	

El	ements	Conce	entration	Matrix		
Ag		50 μg/mL				
	, Fe, Li, Mg, Mn, Mo, Ni, Pb, Sb, , Ti, Tl, V, Zn	100 μg/mL		5% HNO₃/tr. Tartaric Acid/tr. HF		
Volume	Part #	Volume	Part #	Volume	Part #	
125 mL	QC-22	250 mL	QC-22-250	500 mL	QC-22-500	

Aqua regia, or "royal water", is a mixture of 1 part nitric acid and 3 parts hydrochloric acid used to digest gold and platinum. An aqua regia solution can be prepared by using Spex CertiPrep nitric acid and hydrochloric acid blanks.

Multi-Element Standards for AA & ICP

Eleme	nts	Concentration	Matrix
Ag, Al, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga,	In, K, Li, Mg, Mn, Na, Ni, Pb, Sr, Tl, Zn	1,000 μg/mL	10% HNO ₃
	Volume	Part #]
	125 mL	QC-23	

Elements		Concentration	Matrix
Ag, Al, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, G	a, In, K, Li, Mg, Mn, Na, Ni, Pb, Tl, Zn	10 μg/mL	10% HNO ₃
	Volume	Part #	
	125 mL	OC-24	

Set Contains	Part #	Set Contains	Part #
QC-21	OC SETA	QC-21	OC SETR
QC-7A	QC-SETA	QC-7	- QC-SETB

Used for spiking the laboratory fortified blank and the laboratory fortified sample matrix. Two (2 mL) of the LFS solution must be added to a 100 mL aliquot of the laboratory fortified blank. This blank must be carried through the entire sample preparation procedure and analysis scheme. *Note: LFS Solution 1 does not contain Ca, K, Mg, or Na because their concentration will vary from one environmental sample to the other. Please view pages 10-21 for all single-element CRMs.*

Elements		Concentration			Matrix		
Ag		2.5 μg/mL					
Ве		5 μg/mL					
Cd, Co, Hg*, Mo, Sn, V		10 μg/n		g/mL	5% HNO ₃ /tr. Tartaric Acid/tr. HF		
Al, As, B, Ba, Cr, Cu, Fe, Li, Mn, Ni, Pb, Sb,	Se, SiO ₂ , Sr, Tl, Zn	25		25 μg/mL			
Р		50 μg/mL					
Volume	Р	art #	[Volume		Part #	
125 mL	LFS	5-1-100 500 mL			LFS-1-500		

* Mercury is supplied as a separate solution (PLHG2-1AY/AX (10 µg/mL)) due to incompatibility with other elements.

Elements		Conce	entration		Matrix	
Ag		2.5	2.5 μg/mL		5% HNO₃/tr. Tartaric Acid/tr. HF	
Ве		5 μ	ug/mL			
Cd, Co, Mo, Sn, V		10	10 μg/mL			
Al, As, B, Ba, Cr, Cu, Fe, Li, Mn, Ni, Pb, Sb,	Se, SiO ₂ , Sr, Tl, Zn	25 μg/mL				
Р		50	50 μg/mL			
Volume	Р	art #	Volume		Part #	
125 mL	LFS	5-1-100N 500 mL			LFS-1-500N	
CIENTISOL, S.L.U.			@cientisol.com · 981 936 33		·	

Phone: +1.732.549.7144 • +1.800.LAB.SPEX

The Laboratory Performance Check (LPC) Standard is a solution of method analytes used to evaluate the performance of the instrument. The LPC standard is used immediately following calibration, after every tenth sample, and at the end of the sample run. The analyzed value of each analyte in the LPC solution should be within 95% to 105% of its expected value. If the analyte value is outside of the interval, reanalyze the LPC. If the analyte is again outside of the \pm 5% limit, the instrument should be recalibrated and all samples following the last acceptable LPC solution should be reanalyzed.

Elem	ents	Concentration	Matrix
Ag		5 μg/mL	
Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Li, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn		20 μg/mL	5% HNO ₃ /tr. Tartaric Acid/tr. HF
Hg*, K, P, SiO ₂		100 µg/mL	
Volume	Part #	Volume	Part #
125 mL	LPC-1-100	125 mL	LPC-1-500

* Mercury is supplied as a separate solution (PLHG2-1X/Y (10 µg/mL)) due to incompatibility with other elements.

Elem	ents	Concentration	Matrix
A	9	5 μg/mL	
Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Li, V, Z		20 μg/mL	5% HNO₃/tr. Tartaric Acid/tr. HF
К, Р,	SiO ₂	100 µg/mL	
Volume	Part #	Volume	Part #
125 mL	LPC-1-100N	125 mL	LPC-1-500N

For use in US EPA Method 6010 and 200.7 (Revision 4.4).

Set Contains	Part #	Set Contains	Part #	
MIXSTD1-100		MIXSTD1-100		
MIXSTD2-100		MIXSTD2-100		
MIXSTD3-100	-	MIXSTD3-100		
MIXSTD4-100		MIXSTD4-100		
MIXSTD5-100		MIXSTD5-100	EPA-SETN	
INTER18-100	EPA-SET	INTER18-100N	EPA-SETIN	
INTER5-100		INTER5-100		
PLHG2-1Y		PLSB7-2Y		
PLSB7-2Y		PLBLK-HCL**		
PLBLK-HCL**		PLBLK-HNO3**		

* Mercury is supplied as a separate solution (PLHG2-1X/1Y) due to incompatibility with other elements.

٦

The Interference Check Standards are used to set or confirm that the correct background correction intervals have been set for sequential ICP spectrometers and that the proper inter-element correction factors are set for simultaneous ICP spectrometers.

For use in US EPA Method 200.7 (Revision 4.4) and SW-846, Method 6010 (Third Edition).

Elements			Concentration N			
Sb		1,00	0 μg/mL	H ₂ O/tr. HNO ₃ /0.6% Tartaric Acid		
Volume	P	art #	Volume		Part #	
125 mL	PL	SB7-2Y	500 mL		PLSB7-2X	

Elements	Elements				Matrix	
Na	Na 1,0					
AI		1,20	0 μg/mL		5% HNO ₃	
Mg		3,00	0 μg/mL			
Fe		5,00	000 μg/mL			
Са		6,000 μg/mL				
Volume	Pa	art #	Volume		Part #	
125 mL	INTE	R5-100	500 mL		INTER5-500	

Elements		Conce	ntration		Matrix		
Be, Hg*		100 μg/mL					
Mn		200 μg/mL					
Ag, Ba, Cd, Co, Cr, Cu, Ni, V,	Zn	300 μg/mL					
Se		500 μg/mL			5% HNO ₃		
As, Pb, Tl		1,000 μg/mL					
К		20,000	20,000 μg/mL				
Volume	Part #		Volume		Part #		
125 mL	INTER18-100		500 mL		INTER18-500		

* Mercury is supplied as a separate solution (PLHG2-1X/1Y) due to incompatibility with other elements.

Set Contains	Part #	Set Contains	Part #
PLSB7-2Y		PLSB7-2Y	
PLHG2-1Y		INTER5-100	INTER-SETN
INTER5-100	INTER-SET	INTER18-100N	
INTER18-100			

Elements		Conc	entration		Matrix	
Ве		100) μg/mL			
Mn		200 μg/mL				
Ag, Ba, Cd, Co, Cr, Cu, Ni, V,	Zn	300)μg/mL		57 1000	
Se		500)μg/mL		5% HNO ₃	
As, Pb, Tl		1,00	0 μg/mL			
К		20,0	20,000 μg/mL			
Volume	Р	art #	Volur	me	Part #	
125 mL	INTE	R18-100N	8-100N 500 mL		INTER18-500N	

Designed to determine the mobility of the Inorganic contaminants present in liquid, solid and multi-phase wastes. To simplify, TCLP is designed to determine the hazardous contaminants that are actually entering into the environment. In addition to the Spex CertiPrep TCLP Standards, designed with all of the elements in one solution, the Toxicity Characteristic rule separates the elements according to specific instrumentation: ICP, GFAA, and Cold Vapor AA.

For use in accordance with the Toxicity Characteristic Rule Regulatory Levels issued in the Federal Register 55, 11846 March 1990; Method 1311.

Elements		Conc	entration		Matrix	
Cd, Se		5 μg/mL				
Ag, As, Cr, Pb		25	μg/mL			
Hg*	Hg*		100 μg/mL		2% HNO ₃	
Ва		500	0 μg/mL			
Volume	Pa	art #	Volume		Part #	
125 mL	TCL	_P-100	500 mL		TCLP-500	

* Mercury is supplied as a separate solution (PLHG2-1X/Y) due to incompatibility with other elements.

Elements	Elements Con			tration		Matrix
Cd, Se		5 μg/mL				
Ag, As, Cr, Pb		25 μ		g/mL 2% HNO₃		2% HNO ₃
Ва		500 μg/mL		g/mL		
Valuma	D	- ut #	Γ	Valuma		Dout #
Volume	P	art #		Volume		Part #
125 mL	TCL	.P-100N		500 mL		TCLP-500N

These standards are for use with procedures for compliance monitoring of drinking water and for analysis of ground and surface water where determination of the drinking water contamination levels are required.

Refer to US National Primary Drinking Water Regulations 40 CFR, Part 141.

Elements	Elements Conc		Concentration		Matrix
Cd, Se		5 μg/mL			
Ag, As, Cr, Hg*, Pb		10 μg/mL		2% HNO ₃	
Ва		100)0 μg/mL		
Volume	Ра	rt #	Volume		Part #
125 mL	EI	P-8	500 mL		EP-8-500

* Mercury is supplied as a separate solution (PLHG2-1AX/Y) due to incompatibility with other elements.

Elements Conce			:en	tration		Matrix
Cd, Se		5 μg/mL				
Ag, As, Cr, Pb		10) µ(g/mL	2% HNO ₃	
Ва		100 μg/mL				
Volume	P	Part #		Volume		Part #
125 mL	E	P-8N		500 mL		EP-8-500N

Elements	Elements		en	tration		Matrix	
Mn		5 μg/mL		ı/mL			
Fe		30 µ) μg/mL		2% HNO ₃	
Cu		10		100 µg/mL			
Zn		500 μg/mL					
Volume	P	art #	Γ	Volume		Part #	
125 mL	I	EP-4		500 mL		EP-4-500	

Set Contains	Part #	Set Contains	Part #
EP-8		EP-8N	
EP-4	DW-SET	EP-4	DW-SETN
PLHG2-1AY			

* Mercury is supplied as a separate solution (PLHG2-1AX/Y) due to incompatibility with other elements.

CIENTISOL, S.L.U.

May be used either as standards or as a means to check the individual analysts accuracy and precision.

Refer to US EPA Methods Manual 600/4-79-020 "Methods for Chemical Analysis of Water and Wastes" Trace Metals 211, 2111 and 21111 Methods.

Elements	C	once	ntration		Matrix	
Hg*		10 μg/mL				
Cd, Se		25 μg/mL 100 μg/mL 250 μg/mL				
As, Be, Co, Cr, Cu, Fe, Mn, Ni, Pb	, Zn				5% HNO ₃	
V						
Al		500 μg/mL				
Volume	Part #		Volume		Part #	
125 mL	WP-15		500 mL		WP-15-500	

* Mercury is supplied as a separate solution (PLHG2-1AY/AX) due to incompatibility with other elements.

Elements		Conce	ntration	Matrix		
Cd, Se		25 μg/mL				
As, Be, Co, Cr, Cu, Fe, Mn, Ni, I	As, Be, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn		100 μg/mL		5% HNO3	
V		250	250 μg/mL			
AI		500 μg/mL				
Volume	D	a whith	Volume		Dout #	
volume	P	art #	volume		Part #	
125 mL	W	P-15N	500 mL		WP-15-500N	

Elements		Concentration				Matrix
Ag		10 μg/mL			2% HNO3	
Sb, Tl		25 μg/mL			270111103	
Volume	Р	Part #		Volume		Part #
125 mL	١	WP-3		500 mL		WP-3-500

Elements		Conc	Concentration			Matrix	
K, Mg 1		10	0 μg/mL			2% HNO3	
Ba, Ca, Mo, Na		500	0μ	ıg/mL			
Volume	P	Part #		Volume		Part #	
125 mL		MN-6		500 mL		MN-6-500	

٦

1

٦

Elements		Concentration				Matrix		
Be, Sb, Tl 5		μg/mL						
Co, Cu, Mn, Ni, Zn		10 μg/mL		2% HNO ₃				
Al, Fe, V		20 μg/mL						
Volume	Ра	Part #		Volume		Part #		
125 mL	WF	WP-11		500 mL		WP-11-500		

Elements		Concentration				Matrix	
K, Mg	К, Мд 100		0 μg/mL		2% HNO ₃		
Ca, Na		500 μg/mL		270111103			
Volume	Р	Part #		Volume		Part #	
125 mL	٦	MN-4 500 mL			MN-4-500		

Set Contains	Part #	Set Contains	Part #
WP-15		WP-15N	
WP-3		WP-3	TM-SETN
MN-6	- TM-SET	MN-6	
PLHG2-1AY		-	

Г

* Mercury is supplied as a separate solution (PLHG2-1AX/Y) due to incompatibility with other elements.

Set Contains	Part #	
WP-11	- AM-SET	
MN-4	AMI-SE I	

CIENTISOL, S.L.U.

ſ

ſ

CIENTISOL, S.L.U.

Spex CertiPrep Claritas PPT[®] standards are a class of Inorganic Certified Reference Standards designed specifically for today's new generation of trace ICP and ICP-MS instrumentation. Based on extensive development, our chemists have formulated this line of high-purity standards for user convenience and stability.

Our Claritas PPT[®] selection of standards includes a complete series of multi-element solutions, many designed for use with US EPA Methods. These solutions are made with the highest purity materials available and are tested on our state-of-the-art ICP-MS. Spex CertiPrep Certified Reference Materials (CRMs) are manufactured under a quality system complying with the requirements of ISO 9001, ISO/IEC 17025 and ISO 17034.

CALIBRATE WITH CONFIDENCE®

Since 1954, our commitment to quality has made Spex CertiPrep the leading manufacturing of Inorganic Certified Reference Materials.

Every Claritas PPT[®] standard is supplied with a comprehensive SPEXertificate[®] which reports actual measured values in the final solution of both the major analytes and up to 68 trace element impurities at ppt levels. As always, each certificate includes NIST documentation and information regarding the methods used. Spex CertiPrep will guarantee the stability and accuracy of each Claritas PPT[®] standard to ± 0.5%, averaged certified analyte concentrations, for one full year from date of shipment.

The great precision, sensitivity and rapid analysis of multi-element mixtures by ICP and ICP-MS instrumentation have mandated their widespread use in environmental, agricultural, semiconductor, metallurgical, and biological laboratories. Advancements in ICP spectroscopy over recent years have extended limits of detection into the low ppb (parts per billion) range. The ICP-MS technique has provided even greater sensitivity, extending detection limits routinely into the low ppt (parts per trillion) range. No longer is one in a million good enough!

Spex CertiPrep offers a variety of customer loyalty programs. Our SPoints Program allows you to earn valuable credits every time you order. For more information, visit

Spex CertiPrep also offers a Loyalty Customer Discount Program to reward you with an *automatic* discount ranging from 5% to 20% off all qualified products.

There is no need to apply for either of these programs. You are automatically enrolled when you purchase Spex CertiPrep products!

For ICP-MS instrumentation tuning and mass calibration prior to analysis.

ICP-MS Tuning Solution 1

A dilution of 100-fold to 1,000-fold, depending on the sensitivity of the instrument, is suggested. Dilute with equal parts of Claritas PPT[®] Nitric Acid Blank and Water Blank to yield a 1% nitric acid matrix.

Elements	Concentration	Volume	Matrix	Part #
Ba, Be, Ce, Co, In, Li, Mg, Pb, Rh, Tl, U, Y	10 μg/mL	125 mL	5% HCI/2% HNO ₃	CL-TUNE-1

ICP-MS Tuning Solution 2

A dilution of 1,000-fold is suggested. Dilute with Claritas PPT[®] Nitric Acid Blank and Water Blank to yield a 1% nitric acid matrix.

Elements	Elements Concentration		Matrix	Part #
Ba, Be, Ce, Co, In, Mg, Pb, Rh, U	10 µg/mL	125 mL	2% HNO ₃	CL-TUNE-2

ICP-MS Tuning Solution 3

E

A dilution of 1,000-fold is suggested. Dilute with Claritas PPT[®] Nitric Acid Blank and Water Blank to yield a 0.5% nitric acid matrix.

Elements	Concentration	Volume	Matrix	Part #	
Be, Ce, Co, Fe, In, Mg, Pb, Th, U	1 μg/mL	125 mL	20/ HNO	CL-TUNE-3	
Ва	10 μg/mL	IZJ IIIL	2% HNO ₃	CL-TUNE-3	

ICP-MS Tuning Solution 4

A dilution of 100-fold to 1,000-fold is suggested. Dilute with Claritas PPT® Nitric Acid Blank to match your sample matrix.

Elements	Concentration	Volume	Matrix	Part #
Co, In, Li, Tl	10 µg/mL	125 mL	2% HNO₃	CL-TUNE-4

Calibration and Matrix Blanks

The calibration, reagent, and rinse blanks are prepared by diluting the appropriate acid with water and any necessary internal standards to produce the required acid concentration, generally 1% HNO₃. May be used for dilution or to establish baselines.

Description	Volume	Matrix	Part #
Nitric Acid Blank	125 mL	2% HNO ₃	CLBLK-HNO3
NILLIC ACIU DIALIK	250 mL	2% HNO ₃	CLBK-HNO3-250
Hydrochloric Acid Blank	125 mL	2% HCl	CLBLK-HCL
DI Water Blank	125 mL	H ₂ O	CLBLK-H2O
Di Water Blank	250 mL	H ₂ O	CLBK-H2O-250

٦

Dilute to the concentration appropriate for the instrument with equal parts of Claritas PPT[®] Nitric Acid Blank and Water Blank. For preparation every two weeks, or as needed.

Elements	Concentration	Volume	Matrix	Part #
Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Th, Tl, U, V, Zn	20 µg/mL	125 mL	5% HNO₃/tr. Tartaric Acid	CL-CAL-1

Elements	Concentration	Volume	Matrix	Part #
Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Th, Tl, U, V, Zn	10 µg/mL	125 mL	5% HNO₃/tr. Tartaric Acid	CL-CAL-1A
Se	50 μg/mL			

Elements	Concentration	Volume	Matrix	Part #
Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sn, Sr, Ti, Tl, V, Zn	100 μg/mL	125 mL	5% HNO₃/tr. Tartaric Acid/tr. HF	CL-CAL-2

Elements	Concentration	Volume	Matrix	Part #
Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sb, Tl, V, Zn	10 µg/mL	125 mL	5% HNO₃/tr. Tartaric Acid	CL-CAL-2A
Se	50 μg/mL			

Elements	Concentration	Volume	Matrix	Part #
Ca, Fe, K, Mg, Na	1,000 μg/mL	125 mL	5% HNO₃	CL-CAL-3

Elements	Concentration	Volume	Matrix	Part #
Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Th, Tl, U, V, Zn	10 μg/mL	125 mL	5% HNO₃/tr. Tartaric Acid	CL-ICV-1
Ca, Fe, K, Mg, Na, Sr	1,000 μg/mL			

Elements	Concentration	Volume	Matrix	Part #
Sn, Ti	10 μg/mL	125 mL	2% HNO ₃ /tr. HF	CL-ICV-2

Elements	Concentration	Volume	Matrix	Part #
Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Tl, V, Zn	10 µg/mL			
Se	50 μg/mL	125 mL	5% HNO₃/tr. Tartaric Acid	CL-ICV-3
Ca, Fe, K, Mg, Na	100 μg/mL			

CIENTISOL, S.L.U.

Г

Г

Elements	Concentration	Volume	Matrix	Part #
As, Be, Ca, Cd, Co, Cr, Cu, Fe, Li, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sr, Ti, Tl, V, Zn	100 µg/mL for each component	125 mL	5% HNO ₃ /tr. Tartaric Acid/tr. H	CL-QC-21
Elements	Concentration	Volume	Matrix	Part #
As, Be, Ca, Cd, Co, Cr, Cu, Fe, Li, Mg, Mn, Ni, Sb, Tl, V, Zn	10 µg/mL	125 mL	5% HNO₃/tr. Tartaric Acid	CL-QC-21A
		. 20 2		

May be used to monitor and correct for changes that occur from differences between standards and samples. Since environmental samples often contain significant amounts of lithium, isotopically enriched 95% ⁶Li can be analyzed as an internal standard, avoiding the signal from the ⁷Li peak.

Elements	Concentration	Volume	Matrix	Part #
Bi, Ho, In, ⁶ Li, Sc, Tb, Y	10 μg/mL	125 mL	2% HNO ₃	CLISS-1

Elements	Concentration	Volume	Matrix	Part #
Bi, Ho, In, ⁶ Li, Rh, Sc, Tb, Y	10 μg/mL	125 mL	2% HNO ₃	CLISS-2

Elements	Concentration	Volume	Matrix	Part #
Bi	10 µg/mL	125 mL	2% HNO ₃	CLBI2-1AY
Ge	10 µg/mL	125 mL	H₂O/tr. F⁻	CLGE9-1AY
ln	10 µg/mL	125 mL	2% HNO ₃	CLIN2-1AY
Rh	10 µg/mL	125 mL	2% HCl	CLRH1-1AY
Sc	10 µg/mL	125 mL	2% HNO ₃	CLSC2-1AY
Tb	10 µg/mL	125 mL	2% HNO ₃	CLTB2-1AY
Y	10 µg/mL	125 mL	2% HNO ₃	CLY2-1AY

Elements		Conc	en	tration	Matrix
Bi, Ge, In, ⁶ Li, Sc, Tb, Y		10) μο	g/mL	5% HNO ₃
Volume	Pa	art #		Volume	Part #
125 mL	CL-IS	M1-100		500 mL	CL-ISM1-500

Elements	Col	ncentration	Matrix
Bi, Ge, In, ⁶ Li, Lu, Rh, Sc, Tb	1	00 μg/mL	2% HNO ₃
	Volume	Part #	
	125 mL	CL-ISM2-100	
CIENTISOL, S.L.U.	www.cientisol.com · info@	cientisol.com · 981 936 338	

For testing the calibration curves as Initial Calibration Verification (ICV) and Continuing Calibration Verification (CCV) solutions. The standards may be mixed and diluted as required.

Elements	Concentration	Matrix	Part #	Elements	Concentration	Mat
Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Tl, V, Zn	10 μg/mL	2% HNO ₃ /tr. Tartaric Acid/ tr. HF	CL-ICS-1	Ca, Fe, K, Mg, Na	200 μg/mL	2% HNO ₃
	1			Elements	Concentration	Matrix
				Mo, Sn, Sr, Ti	10 µg/mL	2% HNO₃/tr. H
Elements	Concentration	Matrix	Part #		·	
Mo, Th, U	10 µg/mL	2% HNO ₃	CL-ICS-4			
				Set Co	ontains	
				CL-I	CS-1	
Elements	Concentration	Matrix	Part #	CL-I	CS-3	
Hg	10 µg/mL	5% HNO ₃	CLHG2-1AY	CL-I	CS-4	CL
				CL-I	CS-5	
				CLHG	52-1AY	

Designed to contain virtually every element in the mass spectrum for concentration verification checks.

Part #

Elements	Concentration	Matrix	Part #
Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sc, Sm, Tb, Th, Tm, Y, Yb	10 μg/mL	5% HNO ₃	CLMS-1

Elements	Concentration	Matrix	Part #
Ag, Al, As, Ba, Be, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Hg*, In, K, Li, Mg, Mn, Na, Ni, Pb,m Rb, Se, Sr, Tl, U, V, Zn	10 μg/mL	5% HNO ₃	CLMS-2

* Mercury is supplied as a separate solution (CLHG2-1AY) due to incompatibility with other elements.

Elements	Concentration	Matrix	Part #
Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Hg*, K, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Tl, U, V, Zn	10 μg/mL	5% HNO ₃	CLMS-2A

* Mercury is supplied as a separate solution (CLHG2-1AY) due to incompatibility with other elements.

Elements	Concentration	Matrix	Part #
Au, Hf, Ir, Pd, Pt, Rh, Ru, Sb, Sn, Te	10 µg/mL	10% HCI/1% HNO ₃	CLMS-3

Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, In, K, Li, Mg, Mn, Na, Ni, Pb,m Rb, Se, Sr, Tl, U, V, Zn	10 μg/mL	5% HNO₃	CLMS-2N

Matrix

Concentration

Elements	Concentration	Matrix	Part #
Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, K, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Tl, U, V, Zn	10 μg/mL	5% HNO3	CLMS-2AN

CIENTISOL, S.L.U.

Elements

Ag, Al, As, Ba, Be,

Designed to contain virtually every element in the mass spectrum for concentration verification checks.

Elements	Concentration	Matrix	Part #	Elements		Concentration
, Ge, Mo, Nb, P, Re, S, Si, Ta, Ti, W, Zr	10 μg/mL	H ₂ O/tr. HF/tr. HNO ₃	CLMS-4	Be, Bi, Ce, Co, In, Mg, Ni, Pb, U		10 μg/mL
	1					
C-1-C		Deve	. #	C. t. C.		
	ontains	Part	#	Set Co		
	VIS-1			CLN		
	MS-2			CLM		
CLM	NS-3			CLN	1S-3	
CLM	NS-4	CLMS-	CET	CLN	1S-4	
CLBLK	(-HNO3	CLIVIS-	-JE I	CLBLK	-HNO3	
CLBL	K-HCL			CLBL	K-HCL	
CLBL	K-H2O			CLBL	<-H2O	
CLHG	52-1AY					

* Mercury is supplied as a separate solution (CLHG2-1AY) due to incompatibility with other elements.

To identify or confirm the maximum concentration of an analyte that does not cause a memory effect greater than the contract required detection limit (CRDL). The test solutions are not analyzed directly; equal volumes of the two are mixed and then introduced into the instrument for a normal sample exposure time. A blank is then run to confirm that all analyte memory effects are below the CRDL.

Elements	Elements Concentration		Part #		
Ag, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, Tl, V, Zn	20 µg/mL	5% HNO3 CL-MEM-			
Al, Ca, Fe, K, Mg, Na	1,000 μg/mL				
Contents		Pa	rt #		
CL-MEM-1		CL-MEM-SET			
CL-MEM-2					

Elements	Concentration	Matrix	Part #	
Mo, Sb, Ti	20 µg/mL			
P, S	1,000 µg/mL		CL-MEM-2	
С	2,000 µg/mL	H₂O/tr. HF	CL-IMEIM-2	
Cl	7,200 μg/mL			

May be run between samples to reduce the memory effect rising from mercury. It is recommended that a solution of gold is five times the concentration of the mercury in the prior sample run.

Element Concentration Matrix Part # Au 100 μg/mL 2% HCl CLAU1-1Y				
Au 100 μg/mL 2% HCl CLAU1-1Y	Element	Concentration	Matrix	Part #
	Au	100 µg/mL	2% HCI	CLAU1-1Y

CIENTISOL, S.L.U.

Designed for addition to a matrix blank prior to digestion for both water and soil. An aliquot of the respective Spike Standard should be added to produce the proper concentration levels in the digestate.

Elements	Concentration	Matrix	Part #
Ag, Be, Cd, Se, Tl	25 μg/mL		
As, Pb	50 μg/mL		
Co, Cr, Cu, Mn, Ni, Sb, V	100 μg/mL	5% HNO₃/tr. Tartaric Acid/ tr. HF	CL-SPIKE-1
Ba, Zn	250 μg/mL		
Fe	500 μg/mL		

Elements	Concentration	Matrix	Part #
Ag, Be, Se, Tl	25 μg/mL		
As, Cd	50 μg/mL		
Co, Pb, Sb	100 µg/mL	5% HNO₃/tr. Tartaric Acid/	CL-SPIKE-2
Ni	125 μg/mL	tr. HF	CL-SPIRE-2
V	150 μg/mL		
Ba, Cr, Cu, Zn	250 μg/mL		

Spex CertiPrep Claritas PPT[®] Isotope Standards can be used for isotope dilution analysis and internal standards. The internal standard element must have similar characteristics to the tested/measured element(s) and not be present in the sample. Using isotope modification standards, the chemist can use less internal standard and have a higher intensity reading while avoiding interferences.

Every Claritas PPT[®] standard is supplied with a comprehensive SPEXertificate[®] which reports actual measured values in the final solution of both the major analytes and up to 68 trace elemental impurities at ppt levels.

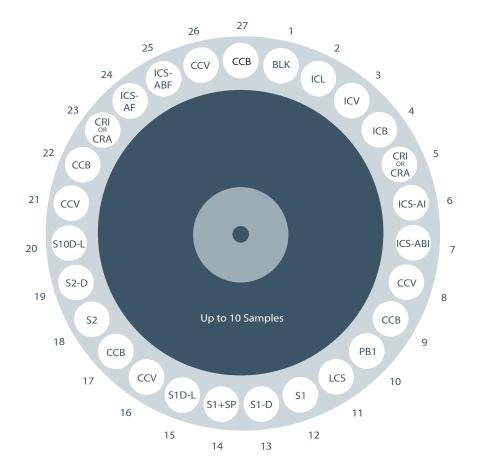
Spex CertiPrep will guarantee the stability and accuracy of each Claritas PPT^{\circ} standard to \pm 0.5%, averaged labeled analyte concentrations, for one full year from date of shipment.

Additionally, the SPEXertificate® for the isotope standard will consist of:

- The isotope ratio measured by ICP-MS
- The concentration of each isotope calculated by ICP-MS and measured by ICP

	_			
Elements	Concentration	Volume	Matrix	Part #
Boron 10	10 µg/mL	125 mL	H ₂ O	ISOT-B10
Boron 11	10 µg/mL	125 mL	H ₂ O	ISOT-B11
Copper 65	10 µg/mL	125 mL	2% HNO ₃	ISOT-CU65
Lithium 6	10 µg/mL	125 mL	2% HNO ₃	ISOT-LI6
Lead 206	10 µg/mL	125 mL	2% HNO ₃	ISOT-PB206
Lead 207	10 µg/mL	125 mL	2% HNO ₃	ISOT-PB207
Strontium 86	10 µg/mL	125 mL	2% HNO ₃	ISOT-SR86
Zinc 68	10 µg/mL	125 mL	2% HNO ₃	ISOT-ZN68

Don't forget your Gold Blank Standard, CLAU1-1Y (see page 62), to reduce the memory effect of mercury!



Our Contract Laboratory Program (CLP) standards allow you to Calibrate with Confidence[®]. The following standards are to be used in conjunction with the Statement of Work for Inorganic Analysis; Multi-Media/Multi-Concentration Document Number ILM 05.3/ISM 01.2.

The final ICP check, performed in our own laboratories, is your stamp of assurance. We calibrate our instruments with traceable reference materials and show you the actual found value of the solution you receive, not just an ideal, calculated number as so many other standards manufacturers do. The section that follows contains multi-element standards referenced to their application. The combination of elements, concentrations, and matrices listed have been designed by Spex CertiPrep for convenience of use and stability.

The US EPA SOW ILM 05.3/ISM 01.2 gives specific procedures for the methods of analysis, target elements, and concentration levels. Standards are specified not only by the elements present and their relative concentrations, but also the order and frequency of running standards, blanks and samples. Details of these specifications may be found in the US EPA SOW ILM 05.3/ISM 01.2 in the following sections:

- Exhibit C, Inorganic Target Analyte List (TAL)
- Exhibit D, Analytical Methods
- Exhibit E, QA/QC Requirements

Blank: PLBLKs

CLP Standards for ICP & ICP-MS

Sample #1 Diluted Five-Fold

Following is a list of samples, standards and blanks in a possible running sequence as suggested by the Contract Laboratory Program protocols as seen on page 65. Also listed are the Spex CertiPrep standards and solutions to be used in preparing the final blanks, standards and spikes. Complete descriptions of each solution are provided on the following pages.

Initial Calibration Solution: Mixture of ICALs	Continuing Calibration Verification (50% ICV): ICV-1A
Initial Calibration Solution. Mixture of ICALS	
Initial Calibration Verification: ICV-1A	Continuing Calibration Blank: PLBLKs (if results of CCV and CCB are within limits, proceed to next
Initial Calibration Blank (not digested): PLBLKs	sample, if not, stop run)
CRDL-2	Sample #2
Initial Interferents, A: INT-A1	Sample #2 Duplicate (up to 10 samples may be run as long as CCV and CCB tests are within accepted limits)
Initial Interferents and Analytes, AB: INT-A1, INT-B3	Sample #10 Diluted Five-Fold
Continuing Calibration Verification (50% ICV): ICV-1A	Continuing Calibration Verification (50% ICV): ICV-1A
Continuing Calibration Blank: PLBLKs (if results of CCV and CCB are within limits, proceed to next sample, if not, stop run)	Continuing Calibration Blank PLBLKs (if results of CCV and CCB are within limits, proceed to next sample, if not, stop run)
Preparation Blank: Digested Water or Soil Blank	2 x Contract Required Detection Limits: CRDL-1
Laboratory Control Sample (digested): ICV-1A	Final Interferents, A: INT-A1
Sample #1	Final Interferents and Analytes, AB: INT-A1, INT-B3
Sample #1 Duplicate	Continuing Calibration Verification (50% ICV): ICV-1A
Sample #1 with SPIKE: SPIKE-1	Continuing Calibration Blank: PLBLKs

May be used separately or mixed together for preparation of the analytical curve. When mixed, these solutions will yield a standard containing all of the elements in the Target Analyte List (TAL). Instruments must be calibrated daily, every 24 hours, or each time the instrument is set-up. Calibration standards must be prepared fresh for each analysis and discarded after use. A dilution of 100-fold is suggested for ICAL-2, ICAL-3 and ICAL-4A, and a dilution of 10-fold for ICAL-1. Antimony and mercury can be diluted as required.

For ISM 01.2, at least one of your calibration standards must be at the Contract Required Quantification Limit (CRQL). See ISM 01.2 sections for CRQL standards.

Applies to part numbers ICAL-1, ICAL-2, ICAL-3, ICAI-4A, ICAL-4A-500, PLSB7-2Y, and PLHG2-1Y.

The US EPA retains analytical services through the Contract Laboratory Program (CLP). The CLP follows detailed SOPs derived from EPA methods. The CLP methods require calibration of analytical instrumentation within the expected quantitative range (ICAL standards) and additional CLP QA standards (ICV standards) to verify the calibration curve at each of the selected wavelengths that will be used for sample analysis.

Our verification standards, ICV-1A, ICV-2 and ICV-3, contain all of the elements on the TAL list and are independent standards for testing an instruments calibration curve. Spex CertiPrep's ICV standards are designed to be used with their corresponding instrument calibration standards (ICAL). Refer to page 71 for a complete list of ICAL standards.

We recommend dilution of ICV standards to a range within your instruments calibration curve. A dilution of 200-fold is recommended for ICV-2A, PLSB7-2X and ICV-2C. A dilution of 20-fold is recommended for ICV-1A and ICV-3.

Applies to part numbers ICV-1A and ICV-3.

CLP ISM 01.2 & ILM 05.3 Standards for ICP

For ILM 05.3, a standard must be run at the Contract Required Detection Limits (CRDL). To verify linearity near the CRQL, this standard is analyzed at the beginning of the analysis run, after the ICV/ICB and before the ICSA and ICSAB. In addition, this standard must be run at a frequency of not less than 20 analytical samples and at the end of the analysis run, followed by the ICSA/ISCAB. The sequence order is CCV, CCB, CRI, ICSA, ICSAB, CCV, and CCB.

For ISM 01.2, at least one of your calibration standards must be at the Contract Required Detection Limit (CRDL). This standard, when diluted, can be used as a calibration standard to fulfill this requirement.

Applies to part numbers CRDL-2 and CRDL-2A.

CLP ISM 01.2 Standards for ICP-MS

For ISM 01.2, at least one of your calibration standards must be at the Contract Required Detection Limit (CRDL). This standard, when diluted, can be used as a calibration standard to fulfill this requirement.

Applies to part numbers CL-CRDL-2.

CLP ILM 05.3 Standards for ICP-MS

A standard must be run at the Contract Required Detection Limits (CRDL). To verify linearity near the CRQL, this standard is analyzed at the beginning of the analysis run after the ICV/ICB and before the ICSA and ICSAB. In addition, this standard must be run at a frequency of not less than 20 analytical samples and at the end of the analysis run, followed by the ICSA/ICSAB. The sequence order is CCV, CCB, CRI, ICSAB, CCV, CCB.

Applies to part numbers CL-CRDL-2

CIENTISOL, S.L.U.

CLP ILM 02.0 & 05.2 Standards for ICP and CLP-M/6020/SW-846 Standards for ICP-MS

A standard must be run at two times the Contract Required Detection Limits (CRDL), or at two times the Instrument Detection Limits (IDL), whichever is greater. This standardization is performed at the start and the end of each sample analysis or at least twice in each eight hour shift.

All elements to be analyzed must be run except Al, Ba, Ca, Fe, K, Mg, and Na.

Our CRDL-1 and CL-CRDL-1standards contain all of the required elements on the TAL, in their appropriate concentration ratios. CRDL-1 should be diluted by a factor of 1,000 prior to use in the "two times CRDL" run for ICP-AES analysis. For analysis by atomic absorption, CRDL-1 should be diluted by a factor of 2,000 prior to use in the "one time CRDL" run. CL-CRDL-1 should be diluted by a factor of 1,000 prior to use in the "two times CL-CRDL" run for ICP analysis. For analysis by atomic absorption, CL-CRDL-1 should be diluted by a factor of 2,000 prior to use in the "two times CL-CRDL" run for ICP analysis. For analysis by atomic absorption, CL-CRDL-1 should be diluted by a factor of 2,000 prior to use in the "one time CL-CRDL" run.

Applies to part number CRDL-1 and CL-CRDL-1.

CLP ISM 01.2 and ILM 05.2 & 05.3 Standards for ICP

For verification of inter-element and background correction factors at the beginning and the end of each analysis run. In addition, a verification must be done after every 20th sample. Two solutions are required for the most common interference check: Solution A, the interferents alone (INT-A1) and Solution AB, a combination of interferents (INT-A1) and analytes (INT-B3). Solution A is prepared by diluting INT-A1 20-fold. Solution AB is prepared by diluting INT-A1 20-fold and INT-B3 100-fold; for example, 5 mL of INT-A1 and 1 mL of INT-B3 into a 100 mL volumetric flask, brought to volume with a matrix blank (see pages 22 & 40). Once prepared, the solutions should be analyzed consecutively, starting with Solution A.

Applies to part numbers INT-A1 and INT-B3.

CLP ILM 02.0 Standards for ICP

For verification of inter-element and background correction factors at the beginning and the end of each analysis run. In addition, a verification must be done after every 20th sample. Two solutions are required for the most common interference check: Solution A, the interferents alone (INT-A1) and Solution AB, a combination of interferents (INT-A1) and analytes (INT-B1). Solution A is prepared by diluting INT-A1 20-fold. Solution AB is prepared by diluting INT-A1 20-fold and INT-B1 100-fold; for example, 5 mL of INT-A1 and 1 mL of INT-B1 into a 100 mL volumetric flask, brought to volume with a matrix blank (see pages 22 & 40). Once prepared, the solutions should be analyzed consecutively, starting with Solution A.

Applies to part numbers INT-A1 and INT-B1.

CLP ISM 01.2 and ILM 05.2 & 05.3 Standards for ICP-MS

For verification of inter-element and background correction factors at the beginning and the end of each analysis run. In addition, a verification must be done after every 20th sample. Two solutions are required for the most common interference check: Solution A, the interferents alone (CL-INT-A2) and Solution AB, a combination of interferents (CL-INT-A2) and analytes (CL-INT-B3 or CL-INT-B4). Solution A is prepared by diluting CL-INT-A2 10-fold. Solution AB is prepared by diluting CL-INT-A2 10-fold and CL-INT-B3 or CL- INT-B4 100-fold; for example, 10 mL of CL-INT-A2 and 1 mL of CL-INT-B3 or CL-INT-B4 into a 100 mL volumetric flask, brought to volume with a matrix blank (see pages 22 & 40). Once prepared, the solutions should be analyzed consecutively, starting with Solution A.

Applies to part numbers CL-INT-A2, CL-INT-B3, CL-INT-B3N, and CL-INT-B4.

CLP-M/6020/SW-846 Standards for ICP-MS

For verification of inter-element and background correction factors at the beginning and the end of each analysis run. In addition, a verification must be done after every 20th sample. Two solutions are required for the most common interference check: Solution A, the interferents alone (CL-INT-A1) and Solution AB, a combination of interferents (CL-INT-A1) and analytes (CL-INT-B1). Solution A is prepared by diluting CL-INT-A1 20-fold. Solution AB is prepared by diluting CL-INT-A1 20-fold and CL-INT-B1 100-fold; for example, 5 mL of CL-INT-A1 and 1 mL of CL-INT-B1 into a 100 mL volumetric flask, brought to volume with a matrix blank (see pages 22 & 40). Once prepared, the solutions should be analyzed consecutively, starting with Solution A.

Applies to part numbers CL-INT-A1 and CL-INT-B1.

Alternate Standards

We also provide a solution of alternate interferents and alternate analytes. Alternate interferents A (INT-A2) and alternate analytes B (INT-B2) may be prepared in combination with the INT-A1 and INT-B3 solutions mentioned, or any combination involving the four solutions, depending on the analytes and interferents of interest to you.

We provide ICP-MS interferents and interferent check solutions for SW-845.

Applies to part numbers INT-A2, INT-B2, CL-INT-A3, and CL-INT-B2.

In the spike sample analysis, a spike containing the required elements, in their respective amount, is added to the sample prior to addition of any reagents, digestions, distillation, etc. Information is then provided on the effects of the sample matrix and the entire methodology.

CLP ISM 01.2 and ILM 05.2 & 05.3 Standards for ICP

Our spike standard, SPIKE-4, provides all of the analytes required for the IC, ICP-AES and the AA spike.

Applies to part numbers SPIKE-4.

CLP ILM 02.0 Standards for ICP

Our spike standard, SPIKE-1, provides all of the analytes required for the ICP-AES and the AA spike. Add 1 mL of SPIKE-1 to aqueous samples and 2 mL of SPIKE-1 to solid samples prior to digestion.

Applies to part numbers SPIKE-1 and SPIKE1-500.

CLP ILM 05.2 Standards for ICP-MS

Our spike standard, CL-SPIKE-3, provides all of the analytes required for the ICP and AA spike.

Applies to part number CL-SPIKE-3.

CLP ISM 01.2 Standards for ICP-MS

Our spike standard, CL-SPIKE-4, provides all of the analytes required for the ICP-MS and the AA spike. Add 1 mL of CL-SPIKE-4 to aqueous samples and 2 mL of CL-SPIKE-4 to solid samples prior to digestion.

Applies to part number CL-SPIKE-4.

CLP ILM 05.3 Standards for ICP-MS

Our spike standard, CL-SPIKE-4, provides all of the analytes required for the ICP-MS.

Applies to part number CL-SPIKE-4.

CLP-M/6020/SW-846 Standards for ICP-MS

Our spike standards, CL-SPIKE-1 and CL-SPIKE-2, provide all of the analytes required for ICP-MS. Add 1 mL of CL-SPIKE-1 to aqueous samples and 2 mL of CL-SPIKE-2 to solid samples prior to digestion.

Applies to part numbers CL-SPIKE-1 and CL-SPIKE-2.

See page 67 for details.

Г

Г

Elements	Concentration	Matrix	Volume	Part #
Ca, K, Mg, Na	5,000 μg/mL	5% HNO ₃	125 mL	ICAL-1

Elements	Concentration	Matrix	Volume	Part #
Ag, Cr	100 µg/mL			
Mn	150 µg/mL		125 ml	
Zn	200 µg/mL	- 5% HNO ₃	125 mL	ICAL-2
Ni	400 μg/mL			

Elements	Concentration	Matrix	Volume	Part #
Ве	50 μg/mL			
Cu	250 μg/mL			
Co, V	500 μg/mL	5% HNO ₃	125 mL	ICAL-3
Fe	1,000 μg/mL			
Al, Ba	2,000 μg/mL			

Elements	Elements Concer		ration		Matrix
Pb		30 μg/mL		/mL	
Cd, Se		50 μg/mL 100 μg/mL		5% HNO ₃	
As, TI					
Volume	Part #		Part # Volume		Part #
125 mL	ICAL-4A	ICAL-4A 500 mL			ICAL-4A-500

The following dilutions are suggested: a dilution of 250-fold for ICAL-1; 100-fold for ICAL-2 and ICAL-3; 20-fold for ICAL-4A. Antimony and mercury can be diluted as required.

٦

٦

See page 67 for details.

Elements	Concentration	Matrix	Volume	Part #
Hg	100 μg/mL	5% HNO ₃	125 mL	PLHG2-1Y
Sb	1,000 μg/mL	H ₂ O/0.6% Tartaric Acid/tr. HNO ₃	125 mL	PLSB7-2Y

See page 67 for details.

Г

Elements	Concentration	Matrix	Volume	Part #
Pb	3 μg/mL			ICV-1A
Be, Cd, Se	5 μg/mL		500 mL	
Ag, As, Cr, Tl	10 μg/mL			
Mn	15 μg/mL			
Zn	20 μg/mL			
Cu	25 μg/mL			
Ni	40 μg/mL	5% HNO₃/tr. Tartaric Acid/tr. HF		
Co, V	50 μg/mL			
Sb	60 μg/mL			
Fe	100 μg/mL			
Al, Ba	200 µg/mL			
Ca, K, Mg, Na	5,000 μg/mL			

Elements	Concentration	Matrix	Volume	Part #
Ве	5 μg/mL			
Cr	20 μg/mL			
Ag, Cu	25 μg/mL			
Cd, Co, Mn, Ni, V, Zn	50 μg/mL	5% HNO₃	500 mL	ICV-3
As, Fe, Pb, Se, Tl	100 µg/mL			
Al, Ba	200 µg/mL			
Ca, K, Mg, Na	500 μg/mL			

Having trouble finding the Multi-Element Standard you need? Fill out the Custom Standard Request Form at

.

CLP ISM 01.2 and ILM 05.3 Standards for ICP

See page 67 for details.

Г

Elements	Concentration	Matrix	Volume	Part #
Be, Cd	10 μg/mL		125 mL	CRDL-2
As, Cr, Pb, Ag	20 μg/mL			
Mn	30 μg/mL			
Cu, Tl	50 μg/mL			
Se	70 μg/mL	5% HNO3/tr. Tartaric Acid/tr. HF		
Ni	80 μg/mL			
Co, V	100 μg/mL			
Sb, Zn	120 μg/mL			
Fe	200 µg/mL			

Elements	Concentration	Matrix	Volume	Part #
Al, Ba	200 µg/mL	10% UNO	125 ml	CRDL-2A
Ca, K, Mg, Na	5,000 μg/mL	10% HNO ₃	125 mL	CRDL-2A

CLP ISM 01.2 and ILM 05.3 Standards for ICP-MS

See page 67 for details.

Г

Elements	Concentration	Matrix	Volume	Part #
Ag, As, Be, Cd, Co, Mn, Ni, Pb, Tl	2 μg/mL			
Cr, Cu, Sb, Zn	4 μg/mL			
Se, V	10 µg/mL			
Ва	20 µg/mL	5% HNO ₃ /tr. Tartaric Acid/tr. HF	125 mL	CL-CRDL-2
AI	40 µg/mL			
Fe	400 μg/mL			
Ca, K, Mg, Na	1,000 μg/mL			

How do I prevent my antimony oxide (Sb₂O₃) solution from becoming a gelatin when I dissolve it in tartaric acid?

While Sb₂O₃ dissolves easily in tartaric acid and water, the solution is clear at first but a gelatin-like substance can form over time. This is a form of mold. Adding a trace amount of nitric acid to the solution can prevent this.

٦

CLP ILM 02.0 & 05.2 Standards for ICP and CLP-M/6020/SW-846 Standards for ICP-MS

See page 68 for details.

Г

Elements	Concentration	Matrix	Volume	Part #
Pb	6 µg/mL			
Be, Cd, Se	10 µg/mL			
Ag, As, Cr, Tl	20 µg/mL		125 mL	CRDL-1
Mn	30 µg/mL			
Zn	40 µg/mL	5% HNO₃/tr. Tartaric Acid/tr. HF		
Cu	50 μg/mL			
Ni	80 µg/mL			
Co, V	100 μg/mL			
Sb	120 μg/mL			

CLP-M/6020/SW-846 Standards for ICP-MS

See page 68 for details.

Elements	Concentration	Matrix	Volume	Part #
Pb	0.3 μg/mL			CL-CRDL-1
Be, Cd, Se	0.5 μg/mL		125 mL	
Ag, As, Cr, Tl	1 μg/mL			
Mn	1.5 μg/mL			
Zn	2 μg/mL			
Cu	2.5 μg/mL	5% HNO ₃ /tr. Tartaric Acid/tr. HF		
Ni	4 μg/mL	5% HINO ₃ / II. TAITAFIC ACIO/ IF. HF		
Co, V	5 μg/mL			
Sb	6 μg/mL			
Fe	10 μg/mL			
Al, Ba	20 μg/mL			
Ca, K, Mg, Na	500 μg/mL			

CLP ISM 01.2 and ILM 05.2 & 05.3 Standards for ICP

See page 68 for details.

Elements	Concentration	Matrix	Volume	Part #
Fe	2,000 μg/mL	5% HNO ₃	500 ml	INT-A1
Al, Ca, Mg	5,000 μg/mL		500 mL	INT-AT

CLP ISM 01.2 and ILM 05.2 & 05.3 Standards for ICP

See page 68 for details.

Г

Elements	Concentration	Matrix	Volume	Part #
Pb, Se	5 μg/mL			
As, TI	10 µg/mL			
Ag	20 µg/mL		125 mL	INT-B3
Ba, Be, Co, Cr, Cu, Mn, V	50 μg/mL	5% HNO₃/tr. Tartaric Acid/tr. HF		
Sb	60 µg/mL			
Cd, Ni, Zn	100 μg/mL			

CLP ILM 02.0 Standards for ICP

See page 68 for details.

Elements	Concentration	Matrix	Volume	Part #
Fe	2,000 μg/mL	50/ 11010	500 mL	INT-A1
Al, Ca, Mg	5,000 μg/mL	5% HNO ₃	500 ML	INT-A1

Elements	Concentration	Matrix	Volume	Part #
Ba, Be, Co, Cr, Cu, Mn, V	50 μg/mL		125 mL	INT-B1
Ag, Cd, Ni, Pb, Zn	100 μg/mL	5% HNO₃	12 <i>3</i> IIIL	IIN I - D I

CLP ISM 01.2 and ILM 05.2 & 05.3 Standards for ICP-MS

See page 68 for details.

Elements	Concentration	Matrix	Volume	Part #
Mo, Ti	20 μg/mL			
Al, Ca, Fe, K, Mg, Na, P, S	1,000 μg/mL	5% HNO ₃ /tr. HF	125 mL	CL-INT-A2
С	2,000 μg/mL		125 IIIL	
Cl	10,000 μg/mL			

Elements	Concentration	Matrix	Volume	Part #
Ag, As, Ba, Be, Cd, Co, Cr, Cu, Hg*, Mn, Ni, Pb, Sb, Se, Tl, V, Zn	2 μg/mL	2% HNO₃/tr. Tartaric Acid/tr. HF	125 mL	CL-INT-B3

* Mercury is supplied as a separate solution (CLHG2-1AY) due to incompatibility with other elements.

Elements	Concentration	Matrix	Volume	Part #
	Concentration	Matrix	Volume	rait#
Ag, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Tl, V, Zn	2 μg/mL	2% HNO₃/tr. Tartaric Acid/tr. HF	125 mL	CL-INT-B3N

CLP ISM 01.2 and ILM 05.2 & 05.3 Standards for ICP-MS

See page 68 for details.

r

Elements	Concentration	Matrix	Volume	Part #
Ag, As, Ba, Be, Cd, Co, Sb, Se, Tl, V	20 μg/mL			
Cu, Pb, Ni	25 μg/mL	5% HNO₃/tr. HF	125 mL	CL-INT-B4
Mn, Zn	30 μg/mL			
Cr	40 μg/mL			

CLP-M/6020/SW-846 Standards for ICP-MS

See page 69 for details.

Elements	Concentration	Matrix	Volume	Part #
Mo, Ti	20 μg/mL			
Al, K, Mg, P, S	1,000 μg/mL	- 5% HNO₃/tr. HF	125 mL	CL-INT-A1
С	2,000 μg/mL			
Fe, Na	2,500 μg/mL			
Ca	3,000 μg/mL			
Cl	21,215 μg/mL			

Elements	Concentration	Matrix	Volume	Part #
Ag	5 μg/mL			
As, Cd, Se, Zn	10 μg/mL	2% HNO ₃	125 mL	CL-INT-B1
Co, Cr, Cu, Mn, Ni, V	20 µg/mL			

CLP ILM 02.0 Standards for ICP

See page 69 for details.

Elements		Concentration			Matrix	
Ag, Be, Cd		5 μg/r	nL			
Cr		20 μg/mL 25 μg/mL 50 μg/mL				
Cu				50		
Co, Mn, Ni, Pb, Sb, V, Zn				5% HNO₃/tr. Tartaric Acid/tr.		
Fe		100 µg,	g/mL			
AI, As, Ba, Se, TI		200 µg,	/mL			
Volume	Part #		Volume		Part #	
125 mL	SPIKE-1		500 mL		SPIKE-1-500	

CLP ILM 05.2 Standards for ICP-MS

See page 69 for details.

Г

Г

Elements	Concentration	Matrix	Volume	Part #
Se	1 µg/mL			
Pb	2 µg/mL			
As	4 µg/mL			
Ag, Be, Cd, Tl	5 μg/mL			
Sb	10 μg/mL	5% HNO₃/tr. Tartaric Acid/tr. HF	125 mL	CL-SPIKE-3
Cr	20 μg/mL			
Cu	25 μg/mL			
Co, Mn, Ni, V, Zn	50 μg/mL			
Al, Ba	200 µg/mL			

CLP ISM 01.2 and ILM 05.2 & 05.3 Standards for ICP

See page 69 for details.

Elements	Concentration	Matrix	Volume	Part #
Pb	2 μg/mL			
As	4 μg/mL			
Ag, Be, Cd, Se, Tl	5 μg/mL			
Sb	10 µg/mL			
Cr	20 μg/mL	5% HNO ₃ /tr. Tartaric Acid/tr. HF	125 mL	SPIKE-4
Cu	25 μg/mL			
Co, Mn, Ni, V, Zn	50 μg/mL			
Fe	100 µg/mL			
Al, Ba	200 µg/mL			

CLP-M/6020/SW-846 Standards for ICP-MS

See page 70 for details.

Elements	Concentration	Matrix	Volume	Part #
Ag, Be, Cd, Se, Tl	25 μg/mL			
As, Pb	50 μg/mL			
Co, Cr, Cu, Mn, Ni, Sb, V	100 μg/mL	5% HNO ₃ /tr. Tartaric Acid/tr. HF	125 mL	CL-SPIKE-1
Ba, Zn	250 μg/mL			
Fe	500 μg/mL			

Elements	Concentration	Matrix	Volume	Part #
Ag, Be, Se, Tl	25 μg/mL			
As, Cd	50 μg/mL			
Co, Pb, Sb	100 μg/mL	50/ UNO (the Tantania Asid (the UE	125 mL	CL-SPIKE-2
Ni	125 μg/mL	5% HNO₃/tr. Tartaric Acid/tr. HF	123 IIIL	CL-3PIKE-2
V	150 μg/mL			
Ba, Cr, Cu, Zn CIENTISOL, S.L.U.	250 μg/mL	sol.com · info@cientisol.com · 981 9	36 338	

٦

٦

CLP ISM 01.2 and ILM 05.3 Standards for ICP-MS

See pages 69-70 for details.

Г

Г

Elements	Concentration	Matrix	Volume	Part #
Se	1 μg/mL			
Pb	2 μg/mL			
As	4 μg/mL		125 mL	CL-SPIKE-4
Be, Cd, Ag, Tl	5 μg/mL			
Sb	10 μg/mL			
Cr	20 μg/mL	5% HNO₃/tr. Tartaric Acid/tr. HF		
Cu	25 μg/mL			
Co, Mn, Ni, V, Zn	50 μg/mL			
Fe	100 µg/mL			
Al, Ba	Al, Ba 200 µg/mL			

Interference Checks

See page 69 for details.

Elements	Concentration	Matrix	Volume	Part #
Cr, Cu, Mn, Ni, Ti, V	1,000 μg/mL	5% HNO₃/tr. F⁻	500 mL	INT-A2

Elements	Concentration	Matrix	Volume	Part #
Ca, Fe, Mg, Si	10 μg/mL	- 5% HNO₃/tr. Tartaric Acid/tr. HF	125 mL	INT-B2
Al, As, B, Mo, Na, Sb, Se, Tl	100 μg/mL	5% HNO ₃ / \mathbf{u} . Tartafic Actu/ \mathbf{u} . HF	123 IIIL	IN I-DZ

Elements	Concentration	Matrix	Volume	Part #
Ag, As, Cd, Co, Cr, Cu, Mn, Ni, Zn	10 μg/mL	2% HNO ₃	125 mL	CL-INT-B2

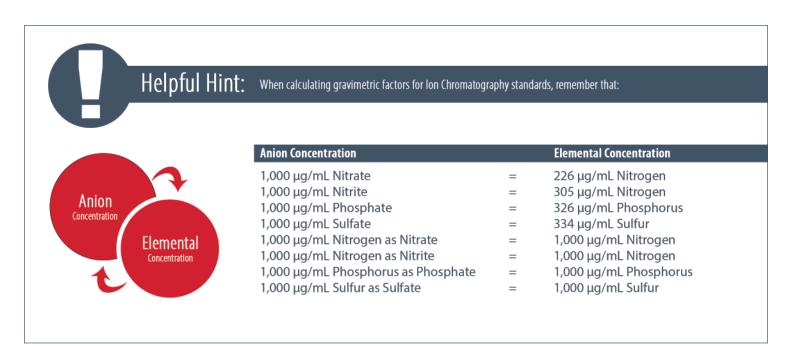
	_			
Elements	Concentration	Matrix	Volume	Part #
Mo, Ti	20 μg/mL			
Al, Mg, P, K, S	1,000 μg/mL	5% HNO₃/tr. HF	125 mL CL-II	
С	2,000 μg/mL			CL-INT-A3
Fe, Na	2,500 μg/mL			
Ca	3,000 μg/mL			
Cl	20,000 μg/mL			

CIENTISOL, S.L.U.

Heavy Metals and Minerals Testing Kits are designed for routinely analyzed heavy metals and minerals. All kits come with six, 30 mL standards which includes a nitric acid blank for easy dilution. Conveniently packaged in a sturdy, heavy-duty carton, these kits are perfect to store on a lab bench or in a cabinet. The 30 mL standards ship non-hazardous, saving money on shipping costs. The smaller volume also allows for less hazardous waste should the standard expire before its contents are used.

Description	Concentration	Volume	Matrix	Part #
Arsenic (CLAS2-2M)	1,000 μg/mL		2% HNO ₃	
Cadmium (CLCD2-2M)	1,000 μg/mL	30 mL each	2% HNO ₃	
Chromium (CLCR2-2M)	1,000 μg/mL		2% HNO ₃	SPXHM-KIT
Lead (CLPB2-2M)	1,000 μg/mL		2% HNO ₃	
Mercury (CLHG4-2M)	1,000 μg/mL		10% HNO ₃	
Nitric Acid Blank (CLBLK-HNO3M)	-		2% HNO ₃	

Description	Concentration	Volume	Matrix	Part #
Calcium (CLCA2-2M)	1,000 µg/mL		2% HNO ₃	
Iron (CLFE2-2M)	1,000 µg/mL	30 mL each	2% HNO ₃	
Magnesium (CLMG2-2M)	1,000 µg/mL		2% HNO ₃	
Potassium (CLK2-2M)	1,000 µg/mL		2% HNO ₃	SPXMT-KIT
Sodium (CLNA2-2M)	1,000 µg/mL		2% HNO ₃	
Nitric Acid Blank (CLBLK-HNO3M)	-		2% HNO ₃	


Spex CertiPrep is proud to announce the installation of over 335 Solar Panels on the roof of our Metuchen, NJ headquarters. This system produces 85 kW of electricity, removing our reliance on power from fossil fuels and other sources. We are committed to helping keep our planet green, and this is just our latest green initiative. For more information, visit

CIENTISOL, S.L.U.

Ion chromatography (IC) is an analytical process for the separation of ions based on charge affinity. IC can be used for a variety of different kinds of charged analytes from single elements to large proteins. In order to ensure accurate analysis, quality standards which are traceable and stable are necessary. Spex CertiPrep offers the highest quality IC standards available for the analytical laboratory.

Specifications of four types of ASTM Water

ASTM Type	I	II	ш	IV
Total Matter (µg/mL)	< 0.1	0.1	1	2
Specific Resistance (megaohm/cm) (max)	18	1	4	0.2
рН	N/A	N/A	N/A	N/A
Color Retention Time of KMnO ₄ (min)	60	60	10	10
Total Silica (μg/L) (max)	3	3	500	High
Total Organic Carbon (μg/L) (max)	50	50	200	N/A

Ion Chromatography & Ion Selective Electrode Standards

Anions	Concentration	Volume	Matrix	Part #
Acetate $(C_2H_3O_2)^-$	1,000 μg/mL —	125 mL	H ₂ O	AS-ACE9-2Y
Acetate (C211302)	1,000 μg/πε	500 mL	1120	AS-ACE9-2X
Bromate (BrO₃) ⁻	1,000 μg/mL	125 mL	H ₂ O	AS-BRO39-2Y
Diomate (DiO ₃)	1,000 µg/mL	500 mL	1120	AS-BRO39-2X
Bromide (Br-)	1,000 μg/mL	125 mL	H ₂ O	AS-BR9-2Y
bioinide (bi-)	1,000 μg/πε	500 mL	1120	AS-BR9-2X
Chlorate (ClO₃) ⁻	1,000 μg/mL –	125 mL	H ₂ O	AS-CLO39-2Y
Chiorate (CiO ₃)	1,000 μg/πε	500 mL	1120	AS-CLO39-2X
	100 µg/mL	125 mL		AS-CL9-1Y
Chloride (Cl)-	roo μg/me	500 mL	H ₂ O	AS-CL9-1X
Chionae (Ci)	1,000 μg/mL	125 mL	1120	AS-CL9-2Y
	1,000 μg/πε	500 mL		AS-CL9-2X
Chlorite (ClO ₂) ⁻	1,000 μg/mL	125 mL	H ₂ O	AS-CLO29-2Y
	1,000 μg/πε	500 mL	1120	AS-CLO29-2X
Chromate (CrO ₄) ⁻²	1,000 μg/mL	125 mL	H ₂ O	AS-CRO49-2Y
Chromate (CrO ₄)	1,000 μg/πε	500 mL	1120	AS-CRO49-2X
Fluoride (F) ⁻	100 μg/mL	125 mL	- - H ₂ O	AS-F9-1Y
		500 mL		AS-F9-1X
ridonae (r)	1,000 μg/mL –	125 mL	1120	AS-F9-2Y
	1,000 μg/πε	500 mL		AS-F9-2X
Formate (HCO ₂) ⁻	1,000 μg/mL	125 mL	H ₂ O	AS-HCO29-2Y
ronnate (neo ₂)	1,000 μg/πε	500 mL	1120	AS-HCO29-2X
lodide (I) ⁻	1,000 μg/mL	125 mL	H ₂ O	AS-19-2Y
	1,000 μg/πε	500 mL	1120	AS-19-2X
Nitrate (NO₃) ⁻	1,000 μg/mL	125 mL	H ₂ O	AS-NO39-2Y
	1,000 μg/πε	500 mL	1120	AS-NO39-2X
Nitrate-Nitrogen	1,000 μg/mL –	125 mL	H ₂ O	AS-NO3N9-2Y
Witate Witogen	1,000 μg/πε	500 mL	1120	AS-NO3N9-2X
Nitrite (NO ₂) ⁻	1,000 μg/mL —	125 mL	H ₂ O	AS-NO29-2Y
	1,000 μg/πε	500 mL	1120	AS-NO29-2X
Nitrite-Nitrogen	1,000 μg/mL	125 mL	H ₂ O	AS-NO2N9-2Y
Nutre Nitrogen	1,000 μg/πε	500 mL	1120	AS-NO2N9-2X
Ammonia Nitrogen	1,000 μg/mL	125 mL	H ₂ O	AS-NH3N9-2Y
Oxalate $(C_2O_4)^{-2}$	1,000 μg/mL	125 mL	H ₂ O	AS-C2O49-2Y
Oxalate (C ₂ O ₄)	1,000 μg/πε	500 mL	1120	AS-C2O49-2X
Perchlorate (ClO ₄)	1,000 μg/mL	125 mL	H ₂ O	AS-CLO49-2Y
Phosphate (PO₄)-3	1,000 μg/mL	125 mL	H ₂ O	AS-PO49-2Y
	1,000 μg/me	500 mL	1120	AS-PO49-2X
osphate-Phosphorus	1,000 μg/mL	125 mL	H ₂ O	AS-PO4P9-2Y
	1,000 µg/IIIL	500 mL	1120	AS-PO4P9-2X
Sulfate (SO₄) ⁻²	1,000 μg/mL	125 mL	H ₂ O	AS-SO49-2Y
Junace (JU4/	1,000 μg/me	500 mL	1120	AS-SO49-2X
Sulfate-Sulfur	1,000 μg/mL	125 mL	ЦО	AS-SO4S9-2Y
Sunate-Sunul	1,000 μg/mL	500 mL	H ₂ O	AS-SO4S9-2X

٦

Cations	Concentration	Volume	Matrix	Part #
Ammonium (NH ₄ +)	1,000 μg/mL	125 mL	H ₂ O	CS-NH49-2Y
Calcium (Ca ²⁺)	1,000 μg/mL	125 mL	0.2% HNO ₃	CS-CA2-2Y
Lithium (Li ⁺)	1,000 μg/mL	125 mL	0.2% HNO ₃	CS-LI2-2Y
Magnesium (Mg ²⁺)	1,000 μg/mL	125 mL	0.2% HNO ₃	CS-MG2-2Y
Potassium (K ⁺)	1,000 μg/mL	125 mL	0.2% HNO ₃	CS-K2-2Y
Sodium (Na+)	1,000 μg/mL	125 mL	0.2% HNO ₃	CS-NA2-2Y

n Selective Electrodes	Concentration	Volume	Matrix	Part #
Bromide (Br)	1,000 μg/mL	125 mL		AS-BR9-2Y
	1,000 μg/mL	500 mL		AS-BR9-2X
	0.1 M	125 mL	H ₂ O	AS-BR9-5Y
	0.1 M	500 mL		AS-BR9-5X
	100 μg/mL	125 mL		AS-CL9-1Y
	100 μg/mL	500 mL		AS-CL9-1X
Chloride (Cl ⁻)	1,000 μg/mL	125 mL	11.0	AS-CL9-2Y
Chioride (CL)	1,000 μg/mL	500 mL	H ₂ O	AS-CL9-2X
	0.1 M	125 mL		AS-CL9-5Y
	0.1 M	500 mL		AS-CL9-5X
	10 µg/mL	125 mL		AS-F9-1AY
	10 µg/mL	500 mL		AS-F9-1AX
	100 μg/mL	125 mL		AS-F9-1Y
	100 μg/mL	500 mL	11.0	AS-F9-1X
Fluoride (F ⁻)	1,000 μg/mL	125 mL	H ₂ O	AS-F9-2Y
	1,000 μg/mL	500 mL		AS-F9-2X
	0.1 M	125 mL		AS-F9-5Y
	0.1 M	500 mL		AS-F9-5X
	1,000 μg/mL	125 mL	20/ 1/011	RSCN9-2Y
Cyanide (CN ⁻)	1,000 µg/mL	500 mL	2% KOH	RSCN9-2X

Buffers	Concentration	Volume	Matrix	Part #
5M Sodium Nitrate (NaNO₃) Buffer	5 M	500 mL	H ₂ O	IS-BUF1-500
10M Sodium Hydroxide (NaOH) Buffer	10 M	500 mL	H₂O	IS-BUF2-500
Low Level TISAB II Buffer	-	500 mL	H₂O	IS-BUF3-500

ſ

Ion Chromatography & Ion Selective Electrode Standards

Elements	Concentration	Volume	Matrix	Part #
F	20 µg/mL			
CL ⁻	30 µg/mL	125	ЦО	ICMIX1-100
NO ₃ -	100 μg/mL	– 125 mL	H ₂ O	ICIVITAT-TOO
HPO ₄ - ² , SO ₄ - ²	150 μg/mL			

Elements	Concentration	Volume	Matrix	Part #
F ⁻	100 μg/mL			
Cl	200 μg/mL	125 ml	11.0	ICMIX2-100
Br-, NO ₃ -, SO ₄ -2	400 μg/mL	– 125 mL	H ₂ O	
HPO4-2	600 μg/mL			

Elements	Concentration	Volume	Matrix	Part #
F ⁻	20 µg/mL			
NO3 ⁻ as N, NO2 ⁻ as N	25 μg/mL			
Cl	50 μg/mL	125 mL	H ₂ O	ICMIX6-100
Br	100 μg/mL			
HPO ₄ ⁻² , SO ₄ ⁻²	150 μg/mL			

Elements	Concentration	Volume	Matrix	Part #
Li+	50 μg/mL			
K ⁺ , Mg ⁺² , NA ⁺	200 µg/mL	125 mL	2% HNO ₃	ICMIX3-100
NH ₄ +	400 µg/mL			
Ca ⁺²	1,000 μg/mL			

Elements	Concentration	Volume	Matrix	Part #
Li+	10 μg/mL			
Na ⁺	50 μg/mL	125 mL	0.5% HNO ₃	ICMIX4-100
K+, NH₄+	100 μg/mL			

Elements	Concentration	Volume	Matrix	Part #
Mg ²⁺	200 μg/mL			
Ca ²⁺	400 μg/mL		20/ 11010	
Sr ²⁺	600 μg/mL	- 125 mL	2% HNO ₃	ICMIX5-100
Ba ²⁺	1,600 μg/mL			

Г

Eluents are made from high purity salts and filtered ASTM Type I Water. All eluents are at 100-fold concentration and ready for dilution, as needed, with filtered ASTM Type I Water.

Description	Concentration	Volume	Matrix	Part #	
0.5 M Sodium Carbonate (Na ₂ CO ₃) Eluent Concentrate	0.5 M	125 mL	H ₂ O	IC-ELCON1-100	
0.5 M Sodium Bicarbonate (NaHCO₃) Eluent Concentrate	0.5 M	125 mL	H₂O	IC-ELCON2-100	
0.18 M Sodium Carbonate (Na ₂ CO ₃)	0.18 M	- 125 mL			
0.17 M NaHCO₃ Sodium Bicarbonate Concentrate	0.17 M	- 125 ML	H ₂ O	IC-ELCON3-100	
ASTM Type I Water, 18 Megaohm	-	500 mL	H₂O	PLBLK-H2O	
ASTM Type I Water, 18 Megaohm	-	1 L	H₂O	PLBLK-H2O-1L	
ASTM Type I Water, 18 Megaohm	-	2 L	H ₂ O	PLBLK-H2O-2L	
ASTM Type I Water, 18 Megaohm	-	4 L	H₂O	PLBLK-H2O-4L	

Contents	Part #	Contents	Part
AS-BR9-5Y		RSCN9-2Y	DECENIO
AS-BR9-2Y	AS-BR9-SET	IS-BUF2-500	RSCN9-
S-BUF1-500		· · · · · · · · · · · · · · · · · · ·	
Contents			
contents	Part #		
	Part #		
AS-F9-5Y	Part #		
AS-F9-5Y AS-F9-1AY AS-F9-1Y	Part # AS-F9-SET		

Cyanide Reference Standard in a simple form designed for US EPA Methods 335.2 and 335.3, ASTM Method D2036-19, and Standard Method 4500-CNF, and in a complex form for use with US EPA Method 335.1.

Description	Element	Concentration	Volume	Matrix	Part #
Cyanide, Simple	CN⁻	1,000 μg/mL	125 mL	2% KOH	RSCN9-2Y
Cyanide, Simple	CN⁻	1,000 μg/mL	500 mL	2% KOH	RSCN9-2X
Cyanide, Complex	CN⁻	1,000 μg/mL	500 mL	2% KOH	RSCN9C-2X

IS-BUF3-500

Our sodium thiosulfate solutions are prepared from ACS Grade, micro-crystalline Na₂S₂O₃. In order to maximize shelf life, our matrix is prepared using double-deionized, ASTM Type I Water.

Our iodine solutions are prepared from ACS Grade potassium iodide and crystalline elemental iodine. To guarantee a clean and stable product, our matrix is prepared using double-deionized, ASTM Type I Water.

All solutions are prepared gravimetrically using high accuracy analytical balances to ensure precise target concentrations. Each batch is thoroughly homogenized using a high speed industrial mixer to ensure reliable results from the first bottle to the last.

We are titrating our samples on our automated titrator. The automated dosing drive uses 10,000 steps over a 20 mL volume, so its dosing increment *can be* as small as 2 μ L. For these applications, we are using a minimum dose of 10 μ L for the sodium thiosulfate endpoint and 4 μ L for the iodine endpoint. These settings achieve the extremely precise measurements for each titration while also staying within the parameters of the dosing unit.

As stated on our Certificate of Analysis, the sodium thiosulfate is run against a 0.1 N potassium dichromate solution. The exact normality of this solution is calculated by comparing it to NIST potassium dichromate. A set of 6 samples are run that must all be within the nominal value of 0.0394 N \pm 0.00008 N.

The certified sodium thiosulfate is then used to titrate iodine. A set of 3 samples are run that must all be within the nominal value of 0.0473 N \pm 0.00003 N.

Before releasing either of these reagents for packaging, we run QC checks with a previous lot to ensure accuracy over time.

Description	Packaging	Volume	Matrix	Part #
0.0394 N Sodium Thiosulfate	Cubitainer	1 Gallon	H₂O/0.5% Amyl Alcohol	182002
0.0473 N lodine	Amber Glass Bottle	1 Gallon	H ₂ O	183134

Contact

or 732.549.7144 today to request a free sample for method validation.

The new guidelines set by the United States Pharmacopeia (USP) and the International Conference on Harmonization (ICH) have pushed the pharmaceutical and nutraceutical industries to provide accurate, quantifiable results for metal analysis in drugs, pharmaceutical substances and raw materials.

USP <232> outlines new limits in pharmaceutical products for arsenic, cadmium, lead, and mercury. The procedures focus on the use of ICP-MS for the analysis of low level impurities. ICP-MS instrumentation, along with accurate ICP-MS standards, allow for increased efficiency and accuracy of the analysis necessary to comply with the new regulations. In addition to the changes enacted by the USP.

Developed in accordance with USP <232> Elemental Impurities, Spex CertiPrep offers these additions to our Consumer Safety Compliance Standards line. These standards can be used as a calibration or check standard to verify Oral Daily Dose PDE, Parenteral Component Limit or Parenteral Daily Dose PDE as well as Inhalation Component Limit or Daily Dose. Our extensive experience in creating quality trace metal standards, coupled with your ICP-MS analysis, will ensure your company will remain compliant with the new and changing regulations.

Co 50 mg/kg V 100 mg/kg 125 mL 2% HNO ₃	
V 100 mg/kg 125 mL 2% HNO ₃	
	USP-ORAL2A
Ni 200 mg/kg	

Elements	Concentration	Volume	Matrix	Part #
TI	8 mg/kg			
Ag	150 mg/kg	125 mL	2% HNO ₃	USP-ORAL2B-1
Se	150 mg/kg			

Elements	Concentration	Volume	Matrix	Part #
Au, Ir, Os, Pd, Pt, Rh, Ru	100 mg/kg for each component	125 mL	15% HCl	USP-ORAL2B-2

	_			
Elements	Concentration	Volume	Matrix	Part #
Li	550 mg/kg			
Ва	1,400 mg/kg	125 mL	100/ 100	USP-ORAL3-1
Cu	3,000 mg/kg	125 IIIL	10% HNO ₃	USP-ORALS-1
Cr	11,000 mg/kg			

Element	Concentration	Volume	Matrix	Part #
Sb	1,200 mg/kg			
Мо	3,000 mg/kg	125 mL	5% HNO ₃ /tr. Tartaric Acid/tr. HF	USP-ORAL3-2
Sn	6,000 mg/kg			

Г

Γ

Γ

Element	Concentration	Volume	Matrix	Part #
Со	5 mg/kg			
V	10 mg/kg	125 mL	2% HNO ₃	USP-PARENT2A
Ni	20 mg/kg			

Element	Concentration	Volume	Matrix	Part #
TI	8 mg/kg			
Ag	10 mg/kg	125 mL	2% HNO ₃	USP-PARENT2B-1
Se	80 mg/kg			

Element	Concentration	Volume	Matrix	Part #
lr	10 mg/kg			
Os	10 mg/kg			
Pd	10 mg/kg			
Pt	10 mg/kg	125 mL	10% HCI	USP-PARENT2B-2
Rh	10 mg/kg	-		
Ru	10 mg/kg			
Au	100 mg/kg			

Element	Concentration	Volume	Matrix	Part #
Sb	90 mg/kg			
Li	250 mg/kg			
Cu	300 mg/kg			
Sn	600 mg/kg	125 mL	5% HNO ₃ /tr. Tartaric Acid/tr. HF	USP-PARENT3
Ва	700 mg/kg			
Cr	1,100 mg/kg			
Мо	1,500 mg/kg			

Elements	Concentration	Volume	Matrix	Part #
Hg	1 mg/kg			
As, Cd	2 mg/kg	125 mL	5% HNO ₃	USP-INHL1
Pb	5 mg/kg			

٦

٦

Elements	Concentration	Volume	Matrix	Part #
V	1 mg/kg			
Со	3 mg/kg	125 mL	2% HNO ₃	USP-INHL2A
Ni	5 mg/kg			

Elements	Concentration	Volume	Matrix	Part #
Ag	7 mg/kg			
TI	8 mg/kg	125 mL	2% HNO ₃	USP-INHL2B-1
Se	130 mg/kg			

Elements	Concentration	Volume	Matrix	Part #
Gold				
Iridium				
Osmium				
Palladium	1 mg/kg for each component	125 mL	5% HCI	USP-INHL2B-2
Platinum				
Rhodium				
Ruthenium				

Elements	Concentration	Volume	Matrix	Part #
Cr	3 mg/kg			
Мо	10 mg/kg]		
Sb	20 mg/kg			
Li	25 mg/kg	125 mL	2% HNO ₃ /tr. Tartaric Acid/tr. HF	USP-INHL3
Cu	30 mg/kg			
Sn	60 mg/kg			
Ba	300 mg/kg			

Elements	Concentration	Volume	Matrix	Part #
As	1.5 mg/kg		5% HNO₃ USP-TXM2	
Pb	5 mg/kg	- 125 mL		
Hg	15 mg/kg		5% HNO₃	USP-I XIVIZ
Cd	25 mg/kg			

Elements	Concentration	Volume	Matrix	Part #
Cd	5 mg/kg			
Pb	5 mg/kg	- 125 mL	50/ HNO /10/ HC	USP-TXM2A
As	15 mg/kg		5% HNO ₃ /1% HCI	USP-1 XIVIZA
Hg	30 mg/kg			

CIENTISOL, S.L.U.

ſ

Г

Г

Г

Г

Г

Г

Elements	Concentration	Volume	Matrix	Part #
Cd	5 mg/kg			
Pb	5 mg/kg	– 125 mL		USP-TXM2A
As	15 mg/kg		5% HNO ₃ /1% HCl	USP-TAMZA
Hg	30 mg/kg			
Elements	Concentration	Volume	Matrix	Part #
Elements		volume	Matrix	rait#
	100 mg/kg for each			

Elements	Concentration	Volume	Matrix	Part #
Ir, Pd, Pt, Rh, Ru	100 mg/kg for each component	125 mL	15% HCl	USP-TXM4

Elements	Concentration	Volume	Matrix	Part #
Мо	100 mg/kg			
V	100 mg/kg	- 125 mL	50/ 11010	
Ni	500 mg/kg		5% HNO ₃	USP-TXM5
Cu	1,000 mg/kg			

Elements	Concentration	Volume	Matrix	Part #
V	100 mg/kg			
Ni	200 mg/kg			
Cu	3,000 mg/kg	125 mL	5% HNO ₃	USP-TXM5A
Мо	3,000 mg/kg			
Cr	11,000 mg/kg			

Elements	Concentration	Volume	Matrix	Part #
V	10 mg/kg			
Ni	20 mg/kg			
Cu	300 mg/kg	125 mL	5% HNO₃	USP-TXM5B
Cr	1,100 mg/kg			
Мо	1,500 mg/kg			

Elements	Concentration	Volume	Matrix	Part #
Cd	2 mg/kg			
Hg	3 mg/kg	105	5% HNO₃/1% HCI	USP-TXM6A
Pb	5 mg/kg	125 mL		
As	15 mg/kg			

٦

٦

Element	Concentration	Volume	Matrix	Part #
As	1.5 mg/kg			
Pb	5 mg/kg	125 ml	5% HNO ₃	ICH-TXM2
Hg	15 mg/kg	— 125 mL		ICH-I XMZ
Cd	25 mg/kg			
Element	Concentration	Volume	Matrix	Part #

Ir, Os, Pd, Pt, Rh, Ru	100 mg/kg	125 mL	15% HCl	ICH-TXM3
T				

Element	Concentration	Volume	Matrix	Part #	
Ir, Pd, Pt, Rh, Ru	100 mg/kg	125 mL	15% HCl	ICH-TXM4	

Element	Concentration	Volume	Matrix	Part #
Co, Mo, V	100 mg/kg		5% HNO ₃	ICH-TXM7
Cr, Ni	250 mg/kg			
Cu	1,000 mg/kg	125 mL		
Mn	2,500 mg/kg			

Element	Concentration	Volume	Matrix	Part #
Fe, Zn	13,000 mg/kg	125 mL	5% HNO₃	ICH-TXM8

We will guarantee your custom standards for one year from the date of shipment and supply your standard with a Comprehensive Certificate of Analysis. With our aqueous standards, you may choose between our conventional ICP certification, or request Claritas PPT[®] certifications, which includes an impurities analysis of up to 68 elements to ppt levels measured on ICP-MS.

To get started, contact our technical support team or visit

with the following information:

- Your specific application/instrumentation
- The elements or complexes you desire
- The concentration(s) at which you require each component
- The matrix which you prefer (e.g., water, dilute acid, oil, methanol, etc.)

ISO 17034 Certified

pH Buffers & Conductivity Standards

Description	Concentration	Matrix	Part #
pH 2.00 Buffer	2 SI Units	H ₂ O	PH-BUFF2-500
pH 3.00 Buffer	3 SI Units	H ₂ O	PH-BUFF3-500
pH 4.00 Buffer	4 SI Units	H ₂ O	PH-BUFF4-500
pH 5.00 Buffer	5 SI Units	H ₂ O	PH-BUFF5-500
pH 6.00 Buffer	6 SI Units	H ₂ O	PH-BUFF6-500
pH 7.00 Buffer	7 SI Units	H ₂ O	PH-BUFF7-500
pH 8.00 Buffer	8 SI Units	H ₂ O	PH-BUFF8-500
pH 9.00 Buffer	9 SI Units	H ₂ O	PH-BUFF9-500
pH 10.00 Buffer	10 SI Units	H ₂ O	PH-BUFF10-500
pH 11.00 Buffer	11 SI Units	H ₂ O	PH-BUFF11-500
pH 12.00 Buffer	12 SI Units	H ₂ O	PH-BUFF12-500

Description	Element	Concentration	Volume	Matrix	Part #
100 µmhos/cm @ 25°C	65 μg/mL as KCL	100 µmhos	500 mL	H ₂ O	TDS-1-500
1,000 µmhos/cm @ 25°C	650 μg/mL as KCL	1,000 µmhos	500 mL	H ₂ O	TDS-2-500

** This is for general informational purposes only. These are uncertified values and do not pertain to any specific lot of product. **

						TEMPERA	TURE (°C)				
Part #	pH Buffer	0	5	10	15	20	25	30	35	40	50
PH-BUFF2-500	pH 2	1.97	1.98	1.98	2.02	2.00	2.00	2.00	2.02	2.01	2.02
PH-BUFF3-500	pH 3	2.97	2.98	2.97	3.00	3.00	3.00	3.02	3.03	3.03	3.06
PH-BUFF4-500	pH 4	4.01	3.99	4.00	4.00	4.00	4.00	4.01	4.02	4.03	4.06
PH-BUFF5-500	pH 5	5.05	5.04	5.03	5.00	5.00	5.00	5.01	5.01	5.04	5.07
PH-BUFF6-500	pH 6	6.07	6.05	6.06	6.05	6.00	6.00	5.99	5.98	5.97	5.96
PH-BUFF7-500	pH 7	7.13	7.10	7.07	7.05	7.02	7.00	6.99	6.98	6.97	6.83
PH-BUFF8-500	pH 8	8.15	8.13	8.08	8.01	8.00	8.00	8.00	7.95	7.94	7.93
PH-BUFF9-500	pH 9	9.17	9.13	9.09	9.06	9.02	9.00	8.97	8.93	8.91	8.87
PH-BUFF10-500	pH 10	10.34	10.26	10.19	10.12	10.06	10.00	9.94	9.90	9.85	9.77
PH-BUFF11-500	pH 11	11.80	11.69	11.46	11.31	11.17	11.00	10.88	10.76	10.62	10.37
PH-BUFF12-500	pH 12	12.02	12.03	12.04	12.01	12.00	12.00	12.02	12.02	12.06	12.10

The determination of wear metals in engine oils and other lubricants can be applied to machines such as automobiles, aircraft, heavy equipment, trucks, locomotives, military vehicles, etc. The examples are endless.

By tracking metals suspended in the used oil, engineers, designers and mechanics can determine the breakdown of specific engine parts. Specific elements present in used oils have been found to be directly related to specific engine problems. Engine failures, as well as expensive repairs, can be avoided if engine oils are analyzed, providing a periodic trend to predict maintenance or replacement.

Spex CertiPrep presents a comprehensive offering of Organometallic Oil Standards. The benefits and advantages of these standards are many:

- Choice of over 35 single-elements at 1,000 or 5,000 $\mu g/g$
- Popular multi-element blends of 23, 21, 12, or 5 elements
- Clear, transparent matrix
- 1 year expiration date
- Convenient sizes: 50 or 100 grams
- Certificate of Analysis with every solution
- Guaranteed stable and accurate
- Manufactured under an internationally accredited ISO 9001 quality system and compliant with ISO/IEC 17025
- Custom standards available
- Wear metals
- Crude oils
- Additive metals
- Environmental monitoring
- Petrochemical testing
- Pharmaceuticals
- Food processing
- Sulfur in diesel fuel

Each standard is supplied with a Certificate of Analysis and is packaged in a 50 gram bottle.

lements in Base Oil	Concentration	Weight	Matrix	Part #
	1,000 µg/g	50 g	Base Oil 20	ORG-AL8-2Z
Aluminum (Al)	5,000 μg/g	50 g	Base Oil 75	ORG-AL8-4Z
Antimony (Sb)	1,000 µg/g	50 g	Base Oil 20	ORG-SB8-2Z
Arsenic (As)	1,000 µg/g	50 g	Base Oil 75	ORG-AS8-2Z
Deviver (De)	1,000 µg/g	50 g	Base Oil 75	ORG-BA8-2Z
Barium (Ba)	5,000 μg/g	50 g	Base Oil 75	ORG-BA8-4Z
Beryllium (Be)	1,000 µg/g	50 g	Base Oil 75	ORG-BE8-2Z
Bismuth (Bi)	1,000 µg/g	50 g	Base Oil 75	ORG-BI8-2Z
Boron (B)	1,000 µg/g	50 g	Base Oil 75	ORG-B8-2Z
DOIOII (D)	5,000 μg/g	50 g	Base Oil 75	ORG-B8-4Z
Codesium (Col)	1,000 µg/g	50 g	Base Oil 75	ORG-CD8-2Z
Cadmium (Cd)	5,000 μg/g	50 g	Base Oil 75	ORG-CD8-4Z
Coloium (Co)	1,000 µg/g	50 g	Base Oil 75	ORG-CA8-2Z
Calcium (Ca)	5,000 µg/g	50 g	Base Oil 75	ORG-CA8-4Z
	1,000 µg/g	50 g	Base Oil 75	ORG-CR8-2Z
Chromium (Cr)	5,000 µg/g	50 g	Base Oil 75	ORG-CR8-4Z
C_{2} is a let (C_{2})	1,000 µg/g	50 g	Base Oil 75	ORG-CO8-2Z
Cobalt (Co)	5,000 µg/g	50 g	Base Oil 75	ORG-CO8-4Z
	1,000 µg/g	50 g	Base Oil 75	ORG-CU8-2Z
Copper (Cu)	5,000 µg/g	50 g	Base Oil 75	ORG-CU8-4Z
	1,000 µg/g	50 g	Base Oil 75	ORG-FE8-2Z
Iron (Fe)	5,000 µg/g	50 g	Base Oil 75	ORG-FE8-4Z
Lood (Db)	1,000 µg/g	50 g	Base Oil 75	ORG-PB8-2Z
Lead (Pb)	5,000 μg/g	50 g	Base Oil 75	ORG-PB8-4Z
	1,000 µg/g	50 g	Base Oil 20	ORG-LI8-2Z
Lithium (Li)	5,000 μg/g	50 g	Base Oil 75	ORG-LI8-4Z
	1,000 µg/g	50 g	Base Oil 75	ORG-MG8-2Z
Magnesium (Mg)	5,000 μg/g	50 g	Base Oil 75	ORG-MG8-4Z
	1,000 µg/g	50 g	Base Oil 75	ORG-MN8-2Z
Manganese (Mn)	5,000 μg/g	50 g	Base Oil 75	ORG-MN8-4Z
Mercury (Hg)	1,000 µg/g	50 g	Base Oil 75	ORG-HG8-2Z
	1,000 µg/g	50 g	Base Oil 75	ORG-MO8-2Z
Molybdenum (Mo)	5,000 µg/g	50 g	Base Oil 75	ORG-MO8-4Z
NI: -L - L (NI:)	1,000 µg/g	50 g	Base Oil 75	ORG-NI8-2Z
Nickel (Ni)	5,000 µg/g	50 g	Base Oil 75	ORG-NI8-4Z
Dheanh crime (D)	1,000 µg/g	50 g	Base Oil 75	ORG-P8-2Z
Phosphorus (P)	5,000 µg/g	50 g	Base Oil 75	ORG-P8-4Z
	1,000 µg/g	50 g	Base Oil 75	ORG-K8-2Z
Potassium (K)	5,000 μg/g	50 g	Base Oil 75	ORG-K8-4Z
Scandium (Sc)	1,000 µg/g	50 g	Base Oil 75	ORG-SC8-2Z
Selenium (Se)	1,000 µg/g	50 g	Base Oil 75	ORG-SE8-2Z

Organometallic Oil Standards

lements in Base Oil	Concentration	Weight	Matrix	Part #
Silicon (Si)	1,000 µg/g	50 g	Base Oil 20	ORG-SI8-2Z
Silver (Ag)	1,000 µg/g	50 g	Base Oil 75	ORG-AG8-2Z
Codium (No)	1,000 µg/g	50 g	Base Oil 20	ORG-NA8-2Z
Sodium (Na)	5,000 μg/g	50 g	Base Oil 75	ORG-NA8-4Z
Sulfur (S)	1,000 µg/g	50 g	Base Oil 75	ORG-S8-2Z
Sullur (S)	5,000 μg/g	50 g	Base Oil 75	ORG-S8-4Z
Thallium (Tl)	1,000 µg/g	50 g	Base Oil 20	ORG-TL8-2Z
Tin (Cra)	1,000 µg/g	50 g	Base Oil 20	ORG-SN8-2Z
Tin (Sn)	5,000 μg/g	50 g	Base Oil 75	ORG-SN8-4Z
Titanium (Ti)	1,000 µg/g	50 g	Base Oil 20	ORG-TI8-2Z
fitanium (11)	5,000 μg/g	50 g	Base Oil 75	ORG-TI8-4Z
Vanadium (V/)	1,000 µg/g	50 g	Base Oil 75	ORG-V8-2Z
Vanadium (V)	5,000 μg/g	50 g	Base Oil 75	ORG-V8-4Z
Yttrium (Y)	1,000 µg/g	50 g	Base Oil 75	ORG-Y8-A-2Z
Zing (Zn)	1,000 µg/g	50 g	Base Oil 20	ORG-ZN8-2Z
Zinc (Zn)	5,000 μg/g	50 g	Base Oil 75	ORG-ZN8-4Z
7:	1,000 µg/g	50 g	Base Oil 20	ORG-ZR8-2Z
Zirconium (Zr)	5,000 µg/g	50 g	Base Oil 75	ORG-ZR8-4Z

Elements in Base Oil	Concentration	Weight	Matrix	Part #
	100 µg/g	50 g		S23-100Z
	100 µg/g	100 g		S23-100Y
	300 µg/g	50 g		S23-300Z
Ag, Al, B, Ba, Ca, Cd, Cr, Cu, Fe,	300 µg/g	100 g	- Base Oil 75	S23-300Y
K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Si, Sn, Ti, V, Zn	500 μg/g	50 g		S23-500Z
	500 μg/g	100 g		S23-500Y
	900 µg/g	50 g		S23-900Z
	900 µg/g	100 g		S23-900Y

Elements in Base Oil	Concentration	Weight	Matrix	Part #
	100 µg/g	50 g		S21-100Z
	100 µg/g	100 g		S21-100Y
	300 µg/g	50 g		S21-300Z
Ag, Al, B, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Mo, Na, Ni, P, Pb, Si, Sn,	300 µg/g	100 g	- Base Oil 75	S21-300Y
Ti, V, Zn	500 μg/g	50 g		S21-500Z
_	500 μg/g	100 g		S21-500Y
	900 µg/g	50 g		S21-900Z
	900 µg/g	100 g		S21-900Y

I

Elements in Base Oil	Concentration	Weight	Matrix	Part #
	100 µg/g	50 g		S12-100Z
	100 µg/g	100 g		S12-100Y
Ag, Al, Cr, Cu, Fe, Mg, Na, Ni, Pb, Si, Sn, Ti	500 μg/g	50 g	Base Oil 75	S12-500Z
	900 µg/g	50 g		S12-900Z
	900 µg/g	100 g		S12-900Y

Elements in Base Oil	Concentration	Weight	Matrix	Part #
	900 μg/g	50 g		AM-900Z
-	900 μg/g	100 g	Base Oil 75	AM-900Y
Pa Ca Ma D Za	1,000 µg/g	50 g		AM-1000Z
Ba, Ca, Mg, P, Zn	1,000 µg/g	100 g		AM-1000Y
_	5,000 μg/g	50 g		AM-5000Z
	5,000 μg/g	100 g		AM-5000Y

Base Oil 20 and 75 are the same certified base oils that are used in our singles and multi-element blends.

Matrix	Part #	Matrix	Part #
Base Oil 20	BASE20	Base Oil 20	BASE20-G
Matrix	Part #	Matrix	Part #
Base Oil 75	BASE75	Base Oil 75	BASE75-G

Governments worldwide have passed regulations that mandate lower levels of sulfur in biodiesel fuel. To comply with the implementation of these regulations, Spex CertiPrep offers specifically designed Certified Reference Materials for industrial use. Our B100 Biodiesel Standards meet the requirements for testing ASTM Methods D6751, D5453 and EN 14214.

Description	Concentration	Volume	Matrix	Part #
Certified Matrix Blank	N/A	100 mL	B100	BF-BLKY
Certified Matrix Blank	N/A	500 mL	B100	BF-BLKX
Sulfur	5 μg/g	100 mL	B100	BFS-5Y
Sulfur	10 µg/g	100 mL	B100	BFS-10Y
Sulfur	15 μg/g	100 mL	B100	BFS-15Y
Sulfur	20 µg/g	100 mL	B100	BFS-20Y
Sulfur	25 μg/g	100 mL	B100	BFS-25Y
Sulfur	50 µg/g	100 mL	B100	BFS-50Y
Sulfur	100 µg/g	100 mL	B100	BFS-100Y
Ca, K, Mg, Na, P	5 μg/g	100 mL	B100	BFM-5Y
Ca, K, Mg, Na, P	10 µg/g	100 mL	B100	BFM-10Y
Ca, K, Mg, Na, P	20 µg/g	100 mL	B100	BFM-20Y

Description	Concentration	Volume	Matrix	Part #
Sulfur Blank	0 µg/g	100 mL	Base Oil 20	DSS8-Y
Sulfur	5 μg/g	100 mL	Base Oil 20	DSS8-5Y
Sulfur	10 μg/g	100 mL	Base Oil 20	DSS8-10Y
Sulfur	15 μg/g	100 mL	Base Oil 20	DSS8-15Y
Sulfur	20 µg/g	100 mL	Base Oil 20	DSS8-20Y
Sulfur	25 μg/g	100 mL	Base Oil 20	DSS8-25Y
Sulfur	50 μg/g	100 mL	Base Oil 20	DSS8-AY
Sulfur	75 μg/g	100 mL	Base Oil 20	DSS8-75Y
Sulfur	100 µg/g	100 mL	Base Oil 20	DSS8-1Y
Sulfur	200 µg/g	100 mL	Base Oil 20	DSS8-BY
Sulfur	300 µg/g	100 mL	Base Oil 20	DSS8-CY
Sulfur	500 μg/g	100 mL	Base Oil 20	DSS8-1AY
Sulfur	750 µg/g	100 mL	Base Oil 20	DSS8-1BY
Sulfur	1,000 µg/g	100 mL	Base Oil 20	DSS8-2Y

Г

Contents	Part #
DSS8-1AY	
DSS8-1BY	
DSS8-1Y	
DSS8-2Y	DSS8-SET
DSS8-AY	D558-5E1
DSS8-BY	
DSS8-CY	
BASE20	

Contents	Part #
SDFS-10-Y	
SDFS-100-Y	
SDFS-15-Y	
SDFS-20-Y	SDFS-SET
SDFS-25-Y	2022-261
SDFS-5-Y	
SDFS-50-Y	
SDFS-BLK-Y	

Description	Concentration	Volume	Matrix	Part #
Sulfur Blank	0 µg/g	100 mL	#2 Diesel Fuel	SDFS-BLK-Y
Sulfur	5 μg/g	100 mL	#2 Diesel Fuel	SDFS-5-Y
Sulfur	10 µg/g	100 mL	#2 Diesel Fuel	SDFS-10-Y
Sulfur	15 µg/g	100 mL	#2 Diesel Fuel	SDFS-15-Y
Sulfur	20 µg/g	100 mL	#2 Diesel Fuel	SDFS-20-Y
Sulfur	25 µg/g	100 mL	#2 Diesel Fuel	SDFS-25-Y
Sulfur	50 µg/g	100 mL	#2 Diesel Fuel	SDFS-50-Y
Sulfur	75 μg/g	100 mL	#2 Diesel Fuel	SDFS-75-Y
Sulfur	100 μg/g	100 mL	#2 Diesel Fuel	SDFS-100-Y
Sulfur	200 µg/g	100 mL	#2 Diesel Fuel	SDFS-200-Y
Sulfur	300 μg/g	100 mL	#2 Diesel Fuel	SDFS-300-Y
Sulfur	400 μg/g	100 mL	#2 Diesel Fuel	SDFS-400-Y
Sulfur	500 μg/g	100 mL	#2 Diesel Fuel	SDFS-500-Y
Sulfur	750 μg/g	100 mL	#2 Diesel Fuel	SDFS-750-Y
Sulfur	1,000 µg/g	100 mL	#2 Diesel Fuel	SDFS-1000-Y

Collectively our employees speak 15 different languages! Languages include: English, French, Russian, Spanish, Mandarin, Japanese, Portuguese, Hindi, Chinese, Sindhi, Hebrew, Gujarati, Indonesian, Punjabi, and German.

HCS PICTOGRAMS & HAZARDS

As of June 1, 2015, OSHA's Hazard Communication Standard (HCS) will require pictograms on labels to alert users of the chemical hazards to which they may be exposed. The HCS is designed to meet the requirements of the Globally Harmonized System (GHS).

CIENTISOL, S.L.U.

Fusion is a technique used to prepare Inorganic samples, with a view to analyze them by X-Ray Fluorescence (XRF), Inductively Coupled Plasma (ICP), Atomic Absorption (AA), or any traditional wet chemistry method. Typical samples include: cements, ores, slag, sediments, soils, rocks, ceramics, pigments, glasses and even metals. A fusion can produce either a small, homogeneous glass disk (or "bead") for XRF, or an acid solution for other analytical methods. Fusion is an extremely effective method of preparation for oxides, sulfides, fluorides, ferroalloys, and other compounds for analysis by XRF, AA, ICP, DCP, etc. The samples are, if necessary, pulverized and mixed with a flux; this mixture is heated until the flux melts and the sample dissolves in it, yielding a clear, homogeneous melt. The melt can be cast as a glass disk for XRF or dissolved in dilute acids for analysis in solution form. In many cases, fusion fluxing is simpler and the analytical results more accurate than if the sample was prepared by conventional acid dissolution or pressed powder methods.

Spex CertiPrep has a line of pure and ultra-pure Fusion Fluxes and Additives. Both lines are of a high purity, with the ultra pure line having a purity of 99.998%. These fluxes are made from a "micro bead" formula that ensures the same ratio of components is in each bead with no harmful dust to clog your instruments. Our highly standardized manufacturing process produces identical batches with no appreciable lot-to-lot variations, thus maintaining a high level of consistency and quality.

Features of our Fluxes:

- **Homogeneity** Each flux has the same composition throughout. If a flux is not homogeneous, segregation will affect the XRF intensities.
- **Purity** With pure fluxes, no element impurity exceeds 10 µg/mL. With ultra pure fusion flux, impurities are practically non-existent.
- **High Density** Our fluxes have a density of 1.4 as compared to 0.3 for fine fluxes. High density flux is easier to handle, measure and, with certain applications, smaller, less expensive platinum ware can be used.
- Not Hydroscopic All of our fluxes have a water content of < 0.05%. The major disadvantage of absorbed water is a loss of accuracy, in the analytical result. This is due to an error in the sample/flux ratio; additionally, the volatilization of water can sometimes occur suddenly, blowing a fraction of the flux sample out of the crucible.
- **Granularity** All of our fluxes have a granularity greater than 500 µm which means that they contain no dust. Due to electrostatic forces, dusty flux sticks to the weighing pan, the funnel, and the crucible wall, resulting in a loss of flux and the formation of glass droplets on the wall of the crucible.
- **Outstanding Fluidity** Granular flux will not stick to surfaces and will leave the crucible wall clean after fusion.

Spex SamplePrep offers two approaches to fusion fluxing: the Spex SamplePrep Automated Fluxer for rapid, repetitive fusions, and graphite crucibles for smaller scale operation.

Spex SamplePrep Graphite Crucibles

Spex SamplePrep graphite crucibles are a cost effective alternative to metal (platinum/gold) crucibles used to contain samples during fusion. Graphite crucibles are disposable, eliminating both the need for time consuming cleaning and the possibility for sample cross contamination. Chemically inert and heat resistant, graphite will not combine with samples during fusion.

Γ

Г

Description	Weight	Part #
Lithium Metaborate (100%)	1 kg	FFB-0000-02
Lithium Tetraborate (100%)]	1 kg	FFB-1000-02
Lithium Tetraborate (99.5%) Lithium Bromide (0.50%)	1 kg	FFB-1005-02
Lithium Tetraborate (67%) Lithium Metaborate (33%)	1 kg	FFB-6700-02
Lithium Tetraborate (65.75%) Lithium Metaborate (33.75%) Lithium Bromide (0.50%)	1 kg	FFB-6705-02
Lithium Tetraborate (50%) Lithium Metaborate (50%)	1 kg	FFB-5000-02
Lithium Tetraborate (49.75%) Lithium Metaborate (49.75%) Lithium Bromide (0.50%)	1 kg	FFB-5005-02
Lithium Tetraborate (49.75%) Lithium Metaborate (49.75%) Lithium Iodide (0.50%)	1 kg	FFB-5007-02
Lithium Tetraborate (49.50%) Lithium Metaborate (49.50) Lithium Bromide (1.00%)	1 kg	FFB-5010-02
Lithium Tetraborate (34.83%) Lithium Metaborate (64.67%) Lithium Bromide (0.50%)	1 kg	FFB-3505-02

Description	Weight	Part #
Lithium Metaborate (100%)	1 kg	FFB-0000-03
Lithium Metaborate (99.5%) Lithium Bromide (0.50%)	1 kg	FFB-0005-03
Lithium Metaborate (98.50%) Lithium Bromide (1.50%)	1 kg	FFB-0007-03
Lithium Tetraborate (100%)]	1 kg	FFB-1000-03
Lithium Tetraborate (99.5%) Lithium Bromide (0.50%)	1 kg	FFB-1005-03
Lithium Tetraborate (99.5%) lithium lodide (0.50%)	1 kg	FFB-1007-03
Lithium Tetraborate (50%) Lithium Metaborate (50%)	1 kg	FFB-5000-03
Lithium Tetraborate (49.75%) Lithium Metaborate (49.75%) Lithium Bromide (0.50%)	1 kg	FFB-5005-03
Lithium Tetraborate (49.75%) Lithium Metaborate (49.75%) Lithium Iodide (0.50%)	1 kg	FFB-5007-03
Lithium Tetraborate (35%) Lithium Metaborate (65%)	1 kg	FFB-3500-03

Description	Package Size	Part #
Lithium Bromide Crystals	125 g	FFB-100-03
Lithium Bromide Solution	15 mL	FFB-103-03
Lithium Bromide Solution (10 pack)	10 x 15mL	FFB-105-03
Lithium Carbonate	1 kg	FFB-401-03
Lithium lodide Crystals	125 g	FFB-110-03
Lithium lodide Solution (10 pack)	10 x 15 mL	FFB-115-03
Lithium Nitrate Crystals	250 g	FFB-300-03

* Additives do not come with Certificate of Analysis.

٦

We are the industry leader for over 60 years in the Certified Reference Materials (CRM) marketplace, we continue to meet the needs of laboratories worldwide with innovation and research.

Our contamination control products are designed and Made by Chemists for Chemists[®] in response to the need for cost effective, easy-to-use equipment, and high purity matrix/wash blanks for the clean laboratory environment.

New, sophisticated instruments which can detect contaminants at parts per trillion (ppt) levels have necessitated the need for eliminating contaminants right at the source. Our dedicated chemists have designed, tested, and approved these products for your use.

Powder in latex gloves used frequently in labs contain high levels of zinc.

Yellow stoppers used for sealing volumetric flasks contain high levels of cadmium.

Dental work containing mercury amalgam fillings can contaminate samples that are directly exposed to exhalation. Calamine lotion is pure zinc oxide.

Hair dyes contain lead acetate.

Eye makeup contains mercury as a preservative.

Visit to download slides and see a recording of our "Clean Laboratory Techniques" presentation.

One major source of contamination is the volumetric pipette. At Spex CertiPrep, our chemists realized that they were spending valuable time manually washing and rinsing pipettes. Conventional washers were expensive and too large to comfortably fit in our laboratory. Our chemists designed a device that could be hooked up to a water line to allow the flow of water or other liquid through the inside and over the outside of the pipettes. As a result, our chemists spent less time cleaning pipettes, and more time manufacturing Spex CertiPrep Certified Reference Materials (CRMs); used and trusted by labs all over the world.

The pipette washer/dryer is easy to use. Simply insert up to 23 pipettes at a time, close the door and attach the tubing to the wash or rinse line. The washer can also be used with the washer basin and pump to circulate wash or rinse solution through the pipettes. The solution shoots out of the pipette tip, reflects off the ceiling portion of the washer and rains a shower down over the outside of the pipettes; thus cleaning both the inside and outside of the pipettes.

To dry the insides of the pipettes, the line is connected to a vacuum source and air is pulled in through the pipette tips until the inside of all of the pipettes are dry.

Product Features:

- Lightweight and compact, the washer/dryer fits within a sink or on a lab bench.
- Durable polyethylene construction.
- Convenient, independent on/off valves control flow to the front and back rows of washers and the main water supply.
- Transparent door closes to prevent splashing when washer is in use.
- 23 cone-shaped, plastic pipette holders accommodate pipettes 0.5-250 mL in size.
- Optional pump and basin available separately.

Technical service available 7:30 AM - 5:30 PM EST. Speak directly with the chemists who developed the washer/dryer.

Demo units available. Please contact us at +1.732.549.7144 or 1.800.LAB.SPEX or via email at

for information and availability.

Description	Specifications	Volts	Hz	Amps	Part #
Pipette Washer/Dryer	3 ft. tall x 1 ft. wide x 1 ft. deep	-	-	-	PIPWASH-1
Pipette Washer Pump	Capacity: 205 Gal/Hr	115 V	60 Hz	1.1 Amps	PIPPUMP-115V
Pipette Washer Pump	Capacity: 205 Gal/Hr	230 V	60 Hz	1.1 Amps	PIPPUMP-230V
Pipette Washer Basin	-	-	-	-	PIPBASIN-1

The 1600 MiniG[®] is the ideal solution for the labs that want a compact yet powerful tool for QuEChERS sample preparation. The clamp holds up to six 50 mL vials and the vigorous vertical movement is both consistent for every vial and results in improved extraction from samples.

Specifications:

- Safety interlock prevents unit from operating when lid is open. Window allows analyst to view samples during operation.
- Vertical clamp movement ensures thorough extraction. Adjustable clamp holds 6 x 50 mL vials, 24 x 15 mL vials or up to 48 x 2 mL vials.
- Digital timer display with adjustable operating time.
- Compact, powerful motor agitates samples from 500 1500 rpm.

Description	Part #
MiniG - Shaker and Tissue Homogenizer	1600
Ceramic Grinding Media - 5/32 in. x 5/16 in.	CP2185
Ceramic Grinding Media 3/8 in. x 7/8 in.	CP2183
Ceramic Grinding Media - 5/16 in. x 5/8 in.	CP2184

